Chứng minh rằng nếu 5(m + n)^2 + mn ⋮ 441 thì mn ⋮ 441 (m, n ∈ ℤ)

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 300 03/04/2024


15000 câu hỏi ôn tập Toán (Phần 105)

Đề bài. Chứng minh rằng nếu 5(m + n)2 + mn 441 thì mn 441 (m, n ℤ)

Lời giải:

Từ giả thiết 5(m + n)2 + mn 441

Mà 441 = 212 nên 5(m + n)2 + mn 21

Ta có: 5(m + n)2 + mn = 5m2 + 11mn + 5n2 = 5m2 – 10mn + 5n2 + 21mn 21

Hay 5(m – n)2 + 21mn 21

Mà 21mn 21 nên 5(m –n)2 21

Và (5;21) = 1 nên (m – n)2 21

Suy ra: m – n 21

(m – n)2 441

5(m – n)2 441

Kết hợp với 5(m + n)2 + mn 441

5(m + n)2 + mn - 5(m – n)2 441

Hay 21mn 441, suy ra mn 441

1 300 03/04/2024


Xem thêm các chương trình khác: