Cho tam giác ABC nhọn, đường cao AH. Trên AH, AB, AC lần lượt lấy D, E, F

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 191 03/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài: Cho tam giác ABC nhọn, đường cao AH. Trên AH, AB, AC lần lượt lấy D, E, F sao cho EDC^ = FDB^ = 90° (E khác B). DE, DF cắt BC lần lượt tại M, N. Chứng minh: EF // BC.

Lời giải:

15000 câu hỏi ôn tập Toán có đáp án (Phần 97) (ảnh 1)

Kẻ BO vuông góc CD, CM vuông góc BD, BO cắt CM tại I

Suy ra: D là trực tâm của ∆BIC hay DI BC

Mặt khác, AH BC suy ra I, D, A thẳng hàng

Do EDC^ = FDB^ = 90° nên ED DC, DF DB

Ta có: ED DC, BO CD, I BO nên ED // BI

DF DB, CM BD, I CM nên DF // CI

Xét ∆ABI với DE // BI, ta có: ADAI=AEAB (hệ quả của định lý Thalès)

Xét ∆ACI với DF // CI, ta có: ADAI=AFAC (hệ quả của định lý Thalès)

Suy ra: AEAB=AFAC

Xét tam giác ABC có AEAB=AFAC nên EF // BC (định lý Thalès đảo).

1 191 03/02/2024


Xem thêm các chương trình khác: