Cho phương trình: x^2 – 2mx + m^2 – 4 = 0. a) Chứng minh rằng phương trình luôn có 2 nghiệm với mọi giá trị của m

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 339 03/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài. Cho phương trình: x2 – 2mx + m2 – 4 = 0.

a) Chứng minh rằng phương trình luôn có 2 nghiệm với mọi giá trị của m.

b) Tìm m để phương trình có 2 nghiệm phân biệt x1; x2 sao cho 3x1 + 2x2 = 7.

Lời giải:

a) x2 – 2mx + m2 – 4 = 0

∆' = m2 – m2 + 4 = 4 > 0 nên phương trình luôn có 2 nghiệm với mọi giá trị của m.

b) Phương trình có 2 nghiệm phân biệt là: x=m+2x=m2

TH1: x1 = m + 2; x2 = m – 2

Khi đó: 3x1 + 2x2 = 7

3(m + 2) + 2(m – 2) = 7

5m + 6 – 4 – 7 = 0

5m – 5 = 0

m = 1.

TH2: x2 = m + 2; x1 = m – 2

Khi đó: 3x1 + 2x2 = 7

3(m – 2) + 2(m + 2) = 7

3m – 6 + 2m + 4 – 7 = 0

5m – 9 = 0

m =95

Vậy m = 1 hoặc m =95 .

1 339 03/02/2024


Xem thêm các chương trình khác: