Cho B = 1 + 3 + 3^2 + 3^101. Chứng minh rằng B chia hết cho 13.

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 154 03/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài: Cho B = 1 + 3 + 32 + 33 + … + 3101. Chứng minh rằng B chia hết cho 13.

Lời giải:

B = 1 + 3 + 32 + 33 + … + 3101

B = (1 + 3 + 32) + (33 + 34 + 35) + … + (399 + 3100 + 3101)

B = (1 + 3 + 32) + 33(1 + 3 + 32) + … + 399(1 + 3 + 32)

B = (1 + 3 + 32)(1 + 33 +… + 399)

B = 13.(1 + 33 +… + 399)

Vì 13 chia hết cho 13 nên 13.(1 + 33 +… + 399) chia hết cho 13

Vậy B chia hết cho 13.

1 154 03/02/2024


Xem thêm các chương trình khác: