Cho ∆ADC vuông tại a có đường cao AH, AH = 3 cm. Trên nửa mặt phẳng

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 337 02/02/2024


Cho ∆ADC vuông tại a có đường cao AH, AH = 3 cm. Trên nửa mặt phẳng

Đề bài: Cho ∆ADC vuông tại a có đường cao AH, D^=65° , AH = 3 cm. Trên nửa mặt phẳng bờ DC chứa điểm A vẽ tia Cx song song với AD, trên Cx lấy điểm B sao cho CB = DA. Tính khoảng cách từ B đến AD, độ dài đoạn BD và diện tích tam giác ABD.

Lời giải:

Tài liệu VietJack

Kẻ BK AD

Xét ∆ADC (A^=90°):ADC^=65°ACD^=25°

Khi đó: CA=AHsinC^=3sin25°

Dễ thấy BCAK là hình chữ nhật BK=AC=3sin25°(cm) và BC = AK

DA = AK (= BC) DK = 2DA

Ta có: DA=AHsinCDA^=3sin25°(cm)

DK=2DA=6sin25°(cm)

Áp dụng định lí Pytago vào ∆BKD vuông tại K có BK2+KD2=BD2

3sin25°2+6sin25°2=BD2BD2=45sin225°BD=35sin25°(cm)

Ta có

SABD=SBKDSBAK=BK.KD2AK.BK2=BK2(KDAK)=BK.AD2=3sin25°.3sin25°2=18sin25°(cm2)

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 337 02/02/2024


Xem thêm các chương trình khác: