Cho a và b thuộc ℕ. Chứng minh rằng 5a^2 + 15ab – b^2 chia hết cho 49

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 172 03/02/2024


15000 câu hỏi ôn tập Toán (Phần 97)

Đề bài: Cho a và b thuộc ℕ. Chứng minh rằng 5a2 + 15ab – b2 chia hết cho 49 khi và chỉ khi 3a + b chia hết cho 7.

Lời giải:

Nếu 3a + b 7 thì (3a + b)2 49

Tức là A = 9a2 + 6ab + b2 49

Đặt B = 5a2 + 15ab – b2

Ta có: A + B = 14a2 + 21ab = 7(2a + 3b) = 7(9a – 7a + 3b) = 7.3.(3a + b) – 49a 49

Từ đó ta được A + B 49

Mà A 49 nên B 49

Ngược lại, nếu B 49 B = 5a2 + 15ab – b2 7

(14a2 + 21ab) – (5a2 +15ab – b2) 7

(3a + b)2 7

(3a + b) 7.

1 172 03/02/2024


Xem thêm các chương trình khác: