Ba bạn A,B,C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 587 02/02/2024


Ba bạn A,B,C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17

Đề bài: Ba bạn A,B,C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng:

 

Tài liệu VietJack

 

Lời giải:

Đáp án đúng là: D.

Không gian mẫu có số phần tử là 173 = 4913.

Lấy một số tự nhiên từ 1 đến 17 ta có các nhóm số sau:

+) Số chia hết cho 3: có 5 số thuộc tập {3; 6; 9; 12; 15}.

+) Số chia cho 3 dư 1: có 6 số thuộc tập {1; 4; 7; 10; 13; 16}.

+) Số chia cho 3 dư 2: có 6 số thuộc tập {2; 5; 8; 11; 14; 17}.

Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] thỏa mãn ba số đó có tổng chia hết cho 3 thì các khả năng xảy ra như sau:

TH1: Ba số đều chia hết cho 3 có 53 = 125 cách.

TH2: Ba số đều chia cho 3 dư 1 có 63 = 216 cách.

TH3: Ba số đều chia cho 3 dư 2 có  63 = 216 cách.

TH4: Một số chia hết cho 3, một số chia cho 3 dư 1, chia cho 3 dư 2 có

5.6.3! = 1080 cách.

Vậy xác suất cần tìm là 125+216+216+10804913=16374913 .

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 587 02/02/2024


Xem thêm các chương trình khác: