Tìm số tự nhiên n để giá trị biểu thức sau là số nguyên tố: A = n^3 – 4n^2 + 4n – 1

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 747 02/02/2024


Tìm số tự nhiên n để giá trị biểu thức sau là số nguyên tố: A = n3 – 4n2 + 4n – 1

Đề bài: Tìm số tự nhiên n để giá trị biểu thức sau là số nguyên tố: A = n3 – 4n2 + 4n – 1.

Lời giải:

Điều kiện: n ℕ.

Ta có A = n3 – 4n2 + 4n – 1

= (n3 – 1) – (4n2 – 4n)

= (n – 1)(n2 + n + 1) – 4n(n – 1)

= (n – 1)(n2 + n + 1 – 4n)

= (n – 1)(n2 – 3n + 1).

Tài liệu VietJack

Để A là số nguyên tố thì A là tích của 1 và chính nó (A > 1).

Với n = 2, ta có: A = n3 – 4n2 + 4n – 1 = 23 – 4.22 + 4.2 – 1 = –1 < 1.

Do đó ta loại n = 2.

Với n = 0, ta có: A = n3 – 4n2 + 4n – 1 = 03 – 4.02 + 4.0 – 1 = –1 < 1.

Do đó ta loại n = 0.

Với n = 3, ta có: A = n3 – 4n2 + 4n – 1 = 33 – 4.32 + 4.3 – 1 = 2 > 1.

Do đó ta nhận n = 3.

So với điều kiện n ℕ, ta nhận n = 3.

Vậy n = 3 thỏa mãn yêu cầu bài toán.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 747 02/02/2024


Xem thêm các chương trình khác: