Chứng minh rằng: Nếu p là một số nguyên tố lớn hơn 3 và 2p + 7 cũng là số nguyên tố

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 137 03/04/2024


15000 câu hỏi ôn tập Toán (Phần 105)

Đề bài. Chứng minh rằng: Nếu p là một số nguyên tố lớn hơn 3 và 2p + 7 cũng là số nguyên tố thì 4p + 7 là một hợp số.

Lời giải:

Vì p và 2p + 7 đều là số nguyên tố lớn hơn 3 nên cả hai đều không chia hết cho 3.

Giả sử: p chia 3 dư 1, giả sử p = 3k + 1 thì 2p + 7 = 2(3k + 1) + 7 = 6k + 9 3 nên mâu thuẫn

Vậy p chia 3 dư 2, giả sử p = 3k + 2

Khi đó 4p + 7 = 4(3p + 2) + 7 = 12p + 15 3, mà 4p + 7 lớn hơn 3

Vậy 4p + 7 là hợp số.

1 137 03/04/2024


Xem thêm các chương trình khác: