Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 173 26/03/2024


15000 câu hỏi ôn tập Toán (Phần 104)

Đề bài. Cho tam giác đều ABC. Trên tia đối của tia CB lấy điểm D. Trong nửa mặt phẳng bờ BC chứa điểm A kẻ các tia Cx // AB, Dy // AC. Hai tia này cắt nhau tại E. Chứng minh rằng:

a) Tam giác ECD đều.

b) AD = BE.

Lời giải:

a) Có AB // Cx (gỉa thiết)

ABC^=ECD^ (2 góc đồng vị)

ABC^=60(vì tam giác ABC đều)

ECD^=60

Có AC // Dy (gỉa thiết) ACB^=EDC^=60(2 góc đồng vị)

ECD^=EDC^=60

Tam giác ECD đều

b) ACB^+ACD^=180(kề bù)

ECD^+ECB^=180(kề bù)

ACB^=EDC^=60

ACD^=ECB^

Xét tam giác ACD và tam giác BCE

CD = ED (tam giác ECD đều)

ACD^=ECB^ (cmt)

AC = BC (tam giác ABC đều)

∆ACD = ∆BCE (c.g.c)

AD = BE (2 cạnh tương ứng).

1 173 26/03/2024


Xem thêm các chương trình khác: