Cho tam giác ABC, điểm D đối xứng vs A qua B, E đối xứng B qua C, F đối xứng C qua A

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 271 26/03/2024


15000 câu hỏi ôn tập Toán (Phần 104)

Đề bài. Cho tam giác ABC, điểm D đối xứng vs A qua B, E đối xứng B qua C, F đối xứng C qua A Gọi G là giao điểm của đường trung tuyến AM. Trong tam giác ABC với trung tuyến DN của tam giác DEF Gọi I, K lần lượt là trung điểm của GA và GD.

1) Chứng minh tứ giác MNIK là hình bình hành.

2) Chứng minh tam giác ABC và tam giác DEF có cùng trọng tâm.

Lời giải:

Nối A vs N

a) Xét tam giác CEF có: N là trung điểm của EF (gt) và A là trung điểm của FC (vì C đối xứng với F qua A)

AN là đường trung bình của tam giác CEF

AN//CE và AN=12CE

AN=12BC(vì BC = CE)

AN = BM(vì BM=12BC)

Xét tứ giác ANMB có: AN = MB (cmt) và AN//MB

(vì AN// CE; B, M, C, E thẳng hàng)

tứ giác ANMB là hình bình hành

MN // AB và AB = MN (1)

xét tam gíac AGD có: I là trung điểm của AG (gt) và K là trung điểm của DG (gt)

IK là đường trung bình của tam giác AGD

IK=12AD và IK //AD

Mà B là trung điểm của AD (vì A đx vs D qua B)

AB = BD = 12AD

IK = AB (=12AD) (2)

Từ (1), (2) IK = MN

Ta có: MN// AB (cmt); B thuộc AD MN//AD

Xét tứ giác MNIK có: IK = MN (cmt) và IK // MN (cùng // AD)

tứ giác MNIK là hình bình hành (đpcm)

b) Do tứ giác MNIK là hình bình hành (câu a) mà G là giao điểm của IM và KN nên G là trung điểm của IM là KN

IG = MG và KG = NG

Mặt khác: I là trung điểm của AG (gt) IG = AI AI = IG = GM

K là trung điểm của DG (gt) DK = KG DK = KG = GN

xét tam giác ABC có: AM là đường trung tuyến và AI = IG = GM (cmt)

G là trọng tâm của tam giác ABC (*)

Xét tam giác DEF có: DN là đg trung tuyến (gt) và DK = KG = GN (cmt) G là trọng tâm của tam giác DEF (**)

Từ (*), (**) G vừa là trọng tâm của tam giác ABC vừa là trọng tâm của tam giác DEF

Tam giác ABC và tam giác DEF có cùng trọng tâm là G (đpcm).

1 271 26/03/2024


Xem thêm các chương trình khác: