Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 896 26/03/2024


15000 câu hỏi ôn tập Toán (Phần 104)

Đề bài. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC và M là trung điểm của BC. Chứng minh rằng:

a) EF = AH.

b) AM EF.

Lời giải:

a) Vì tam giác ABC vuông tại A nên BAC^=90

Vì E, F lần lượt là chân các đường vuông góc hạ từ H xuống AB, AC nên HE vuông góc với AB, HF vuông góc với AC.

Do đó, HEB^=HEA^=HFA^=HFC^=90

Xét tứ giác AFHE có: HEA^=HFA^=BAC^=90

Do đó, tứ giác AFHE là hình chữ nhật.

Suy ra AH = FE (hai đường chéo bằng nhau).

b) Vì tứ giác AFHE là hình chữ nhật nên FHE^=90

Vì AM là đường trung tuyến trong tam giác ABC vuông tại A nên

AM=MB=MC=12BC

Tam giác AMB có AM = MB nên tam giác AMB cân tại M.

Do đó, MAB^=B^

Lại có B^=AHE^=90-HEB^

Nên MAB^=AHE^ (1).

Gọi O là giao điểm của hai đường chéo FE và AH của hình chữ nhật AFHE.

Do đó, OH = OE = OF = OA.

Tam giác OAE có OA = OE nên tam giác OAE cân tại O.

Suy ra OEA^=OAE^

Mà AE song song với FH (do AFHE là hình chữ nhật) nên OHF^=OAE^ (hai góc so le trong).

Do đó, OHF^=OEA^(2).

Lại có OHF^+OHE^=FHE^=90(3).

Từ (1), (2), (3) ta có: MAB^+OEA^=90

Gọi K là giao điểm của AM và EF.

Khi đó, KAE^+KEA^=90

Suy ra AKE^=90

Vậy AM vuông góc với EF tại K.

1 896 26/03/2024


Xem thêm các chương trình khác: