Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của góc HAB

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 331 26/03/2024


15000 câu hỏi ôn tập Toán (Phần 104)

Đề bài. Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của HAB^.

a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.

b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.

c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC.

Chứng minh SAEF = SABC.(1 - cos2B).sin2C.

Lời giải:

a) Ta có tam giác ABC vuông tại A, AH BC

Nên: AH2 = BH.CH = 18.8 = 144

AH = 12cm.

AC = AH2+HC2 =413

b) Vì AD là phân giác BAH^ BAD^=DAH^

HAC^=90-HAB^=ABH^=ABD^

CDA^=DAB^+DBA^=DAH^+CAH^=CAD^

Suy ra: tam giác CAD cân tại C CA = CD

Vì AD là phân giác BAH^ DHDB=AHAB=sinB=ACBC

HD.BC = BD.AC = DB.CD

c) Ta có: HE AB, HF AC, AB AC

Nên AEHF là hình chữ nhật

AH = EF

AEF^=EAH^=BAH^=90-B^=ACB^

EAF^=BAC^

∆AFE ∆ABC (g.g)

SAFESABC=(EFBC)2=AH2BC2
Ta có: 1 – cos2B = sin2B

(1 – cos2B)sin2C = sin2Bsin2C = (sinBsinC)2

= (ACBC.ABBC)2=(AB.ACBC2)2=(AH.BCBC2)2=(AHBC)2

SAFESABC=(1--cos2B)sin2C

SAEF = SABC.(1 - cos2B).sin2C.

1 331 26/03/2024


Xem thêm các chương trình khác: