Cho đa thức bậc 2 có dạng P(x) = ax^2 + bx + c biết rằng P(x) thỏa mãn 2 điều kiện

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 1,778 12/12/2024


Cho đa thức bậc 2 có dạng P(x) = ax2 + bx + c biết rằng P(x) thỏa mãn 2 điều kiện

Đề bài: Cho đa thức bậc 2 có dạng P(x) = ax2 + bx + c biết rằng P(x) thỏa mãn 2 điều kiện sau: P(0) = −2 và 4P(x) – P(2x – 1) = 6x – 6. Chứng minh rằng a + b + c = 0 và xác định đa thức P(x).

Lời giải:

Ta có P(0) = −2 a.0 + b.0 + c = −2 c = −2

Ta có 4P(x) – P(2x – 1) = 6x – 6

4(ax2 + bx + c) – [a(2x – 1)2 + b(2x – 1) + c] = 6x – 6

4ax2 + 4bx + 4c – a(4x2 – 4x + 1) – 2bx + b – c = 6x – 6

4ax2 + 4bx + 4c – 4ax2 + 4ax – a – 2bx + b – c = 6x – 6

4ax + 2bx + (−a + b + 3c) = 6x – 6

(4a + 2b)x + (−a + b + 3c) = 6x – 6

4a+2b=6a+b+3c=6

4a+2b=6a+b=63.2

4a+2b=6a+b=0

a=1b=1

Ta có: a + b + c = 1 + 1 + (−2) = 0 (đpcm)

Vậy P(x) = x2 + x – 2.

*Phương pháp giải:

Thay P(x) vào lập hệ phương trình tìm abc

*Lý thuyết:

1. Đa thức

Đa thức là một tổng của những đơn thức.

Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.

Chú ý: mỗi đơn thức được gọi là một đa thức (chỉ chứa một hạng tử).

Số 0 được gọi là đơn thức không, cũng gọi là đa thức không.

2. Đa thức thu gọn

Đa thức thu gọn là đa thức không chứa hai hạng tử nào đồng dạng.

Biến đổi một đa thức thành đa thức thu gọn gọi là thu gọn đa thức đó.

Để thu gọn một đa thức, ta nhóm các hạng tử đồng dạng với nhau và cộng các hạng tử đồng dạng đó với nhau.

3. Bậc của đa thức

Bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức gọi là bậc của đa thức đó.

Một số khác 0 tùy ý được coi là một đa thức bậc 0.

Số 0 cũng là một đa thức, gọi là đa thức không. Nó không có bậc xác định.

Xem thêm

Lý thuyết Đa thức – Toán lớp 8 Kết nối tri thức

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 1,778 12/12/2024


Xem thêm các chương trình khác: