Với mỗi số nguyên dương n, kí hiệu Sn là tổng của n số nguyên tố đầu tiên

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 291 02/02/2024


Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên

Đề bài: Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).

Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Lời giải:

Gọi pn là số nguyên tố thứ n

Giả sử tồn tại m mà Sm-1 = k2; Sm = l2; k, l ℕ*

Vì S2 = 5, S3 = 10, S4 = 17

Suy ra m > 4

Ta có: Pm = Sm – Sm-1 = l2 – k2 = (l – k)(l + k)

Vì pm là số nguyên tố và k + l > 1 nên lk=1l+k=pm

Suy ra pm=2l1=2Sm1

Suy ra Sm=pm+122                          (1)

Do m > 4 nên

Sm ≤ (1 + 3 + 5 + 7 + ... + pm) + 2 – 1 – 9

Sm1202+2212+3222+...+pm+122pm1228

Smpm+1228<pm+122 (mâu thuẫn với (1))

Vậy trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 291 02/02/2024


Xem thêm các chương trình khác: