Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 627 02/02/2024


Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh

Đề bài: Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh nhau.

Lời giải:

Gọi số tự nhiên có 5 chữ số là  abcde¯.

Buộc 3 chữ số 1, 2, 3 thành 1 cụm, đặt là A

Hoán vị các chữ số 1, 2, 3 cho nhau ta được 3! = 6 khả năng xảy ra của A

Có 3 cách chọn vị trí cho A trong abcde¯

Sau khi chọn xong vị trí cho A, 2 chữ số còn lại có A72=42 cách chọn

Như vậy, sẽ có 3 ∙ 6 ∙ 42 = 756 số được tạo thành tính cả trường hợp a = 0.

Xét a = 0: 

Khi đó, ta có 2 vị trí cho A, và mỗi vị trí có 6 khả năng xảy ra của A (Hoán vị 1, 2, 3)

Chữ số còn lại có 6 cách chọn

Vậy nếu a = 0 thì sẽ có 72 số được tạo thành.

Vậy số số tự nhiên có 5 chữ số (a khác 0) thỏa mãn yêu cầu bài toán: 756 − 72 = 684 số tự nhiên.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 627 02/02/2024


Xem thêm các chương trình khác: