Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 491 02/02/2024


Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm

Đề bài: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M, N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB.

a, Chứng minh: Tứ giác AMCN là hình bình hành

b, Tứ giác AECF là hình gì?

c, Chứng minh: E, F đối xứng qua O

d, Chứng minh: EC = 2DE.

Lời giải:

Tài liệu VietJack

a,

Ta có ABCD là hình bình hành AC ∩ BD tại trung điểm mỗi đường

Mà AC ∩ BD = 0 O là trung điểm AC, DB

Lại có M, N là trung điểm OD, OB

OM = 12  OD = 12  OB = ON

  O là trung điểm MN

Do O là trung điểm AC, MN

AMCN là hình bình hành (đpcm).

b,

Ta có AMCN là hình bình hành.

AM // CN

AE // CF

Mà AB // CD AF // CE

AECF là hình bình hành.

c,

Ta có AECF là hình bình hành.

AC ∩ EF tại trung điểm mỗi đường

Mà O là trung điểm AC

O là trung điểm EF

E, F đối xứng nhau qua O (đpcm).

d,

Gọi G là trung điểm CE

Vì O là trung điểm AC OG là đường trung bình ∆ACE

OG // AE

ME // OG

Mà M là trung điểm DO ME là đường trung bình ∆ODG

E là trung điểm DG

DE = EG = GC

CE  = CG + GE = DE + DE = 2DE (đpcm).

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 491 02/02/2024


Xem thêm các chương trình khác: