Chứng minh bất đẳng thức: a^2 + b^2 + c^2 ≥ ab + bc + ca

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 355 02/02/2024


Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca

Đề bài: Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca.

Lời giải:

Giả sử a2 + b2 + c2 ≥ ab + bc + ca

Û 2(a2 + b2 + c2) ≥ 2(ab + bc + ca)

Û 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

Û (a2 2ab + b2) + (b2 2bc + c2) + (c2 − 2ca + a2) ≥ 0

Û (a b)2 + (b c)2 + (c a)2 ≥ 0

Mà (a b)2 ≥ 0; (b c)2 ≥ 0; (c a)2 ≥ 0 nên suy ra

(a b)2 + (b c)2 + (c a)2 ≥ 0 (luôn đúng)

Vậy a2 + b2 + c2 ≥ ab + bc + ca (đpcm).

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 355 02/02/2024


Xem thêm các chương trình khác: