Cho phương trình x^2 – 5mx – 4m = 0 với m là tham số. Chứng minh rằng khi phương trình có 2 nghiệm phân biệt

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 250 20/02/2024


15000 câu hỏi ôn tập Toán (Phần 102)

Đề bài. Cho phương trình x2 – 5mx – 4m = 0 với m là tham số. Chứng minh rằng khi phương trình có 2 nghiệm phân biệt x1, x2 thì x12 + 5mx2 + m2 + 14m + 1 > 0.

Lời giải:

Xét x2 – 5mx – 4m = 0

Ta có: ∆ = 25m2 + 16m

Để phương trình có 2 nghiệm phân biệt thì ∆ > 0

Suy ra: 25m2 + 16m > 0 hay m>0m<1625

Theo hệ thức Vi-ét ta có:

x1+x2=5mx1x2=4m

Xét x12 + 5mx2 + m2 + 14m + 1

= x12 + (x1 + x2)x2 + m2 + 14m + 1

= x12 + x22 + x1x2 + m2 + 14m + 1

= (x1 + x2)2 - x1x2 + m2 + 14m + 1

= 25m2 + 4m + m2 + 14m + 1

= 26m2 + 18m + 1

= (m + 1)2 + 25m2 + 16m

Mà 25m2 + 16m > 0 và (m + 1)2 > 0 theo điều kiện của m

Vậy (m + 1)2 + 25m2 + 16m > 0 tức là x12 + 5mx2 + m2 + 14m + 1 > 0

1 250 20/02/2024


Xem thêm các chương trình khác: