Cho ΔABC cố định, các điểm D và E di động trên các cạnh tương ứng là AB và AC sao cho

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 248 20/02/2024


15000 câu hỏi ôn tập Toán (Phần 103)

Đề bài. Cho ΔABC cố định, các điểm D và E di động trên các cạnh tương ứng là AB và AC sao cho ADBD=CEEA . Chứng minh rằng: Trung điểm M của đoạn thẳng DE nằm trên 1 đoạn thẳng cố định.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 103) (ảnh 1)

Ta có: ADBD=CEEAADAB=ECCA

Từ E kẻ đường thẳng song song với AB cắt BC tại F (EF // BC)

Theo định lý ta-lét ta có: EFAB=CECA

Suy ra: EFAB=ADABEF=AD

Lại có: EF // AB nên EF // AD

Suy ra: ADFE là hình bình hành

Mà ADFE là hình bình hành có M là trung điểm của đường chéo DE nên M cũng là trung điểm của AF

Gọi I, J lần lượt là trung điểm AB, AC

Suy ra: IJ là đường trung bình của tam giác ABC

IJ // BC (1)

Tam giác ABF có I là trung điểm AB, M là trung điểm AF nên IM là đường trung bình của tam giác ABF

IM // BC (2)

Từ (1) và (2): I, M, J thẳng hàng

Vậy M nằm trên IJ

Mà tam giác ABC cố định, nên IJ cố định, vậy M cố định.

1 248 20/02/2024


Xem thêm các chương trình khác: