Hãy tính tổng F = 1^2 + 2^2 + 3^2 + … + n^2

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 65 lượt xem


15000 câu hỏi ôn tập Toán (Phần 98)

Đề bài. Tính tổng F = 12 + 22 + 32 + … + n2.

Lời giải:

F = 12 + 22 + 32 + … + n2

F = 1 + (1 + 1).2 + (1 + 2).3 + (1 + 3).4 + … + (1 + n – 1)n

F = 1 + (2 + 1.2) + (3 + 2.3) + (4+ 3.4) + … + [n + (n – 1)n]

F = (1 + 2 + 3 + 4 + … + n) + [1.2 + 2.3 + 3.4 + …. + (n – 1)n]

Đặt A = 1 + 2 + 3 + 4 + … + n thì A =nn+121

Đặt B = [1.2 + 2.3 + 3.4 + …. + (n – 1)n]

Xét 3B = 1.2.3 + 2.3.3 + 3.4.3 + … + (n – 1).n.3

3B = [1.2.3 + 2.3.4 + … + (n – 1).n.(n + 1)] – (1.2.3 + 2.3.4 + … + (n – 2)(n – 1)n)

3B = (n – 1)n(n + 1)

B =n1nn+132

Từ (1) và (2) suy ra:

F = nn+12+n1nn+13=3n2+3n+2nn216=2n3+3n2+n6

=n2n2+3n+16=nn+12n+16

Vậy F = 12 + 22 + 32 + … + n2 =nn+12n+16

1 65 lượt xem


Xem thêm các chương trình khác: