Để thành lập các đội tuyển học sinh giỏi khối 9, nhà trường tổ chức thi chọn các môn Toán, Văn và Ngoại ngữ trên tổng số 111 học sinh

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 190 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 98)

Đề bài. Để thành lập các đội tuyển học sinh giỏi khối 9, nhà trường tổ chức thi chọn các môn Toán, Văn và Ngoại ngữ trên tổng số 111 học sinh. Kết quả có: 70 học sinh giỏi Toán, 65 học sinh giỏi Văn và 62 học sinh giỏi Ngoại ngữ. Trong đó, có 49 học sinh giỏi cả 2 môn Văn và Toán, 32 học sinh giỏi cả 2 môn Toán và Ngoại ngữ, 34 học sinh giỏi cả 2 môn Văn và Ngoại ngữ. Hãy xác định số học sinh giỏi cả ba môn Văn, Toán và Ngoại ngữ. Biết rằng có 6 học sinh không đạt yêu cầu cả ba môn.

Lời giải:

Gọi x là số học sinh giỏi cả 3 môn Toán, Văn, Ngoại ngữ (x > 0)

Ta có: Số học sinh chỉ giỏi Toán là: 70 – 49 − (32 − x)

Số học sinh chỉ giỏi Văn là: 65 – 49 − (34 − x)

Số học sinh chỉ giỏi Ngoại ngữ là: 62 – 34 − (32 − x)

Do có 6 học sinh không đạt yêu cầu nên:

111 – 6 = 70 – 49 − (32 − x) + 65 – 49 − (34 − x) + 62 – 34 − (32 − x) + 49 + (32 − x) + (34 − x)

82 + x = 105

x = 23

Vậy có 23 học sinh giỏi cả 3 môn.

1 190 17/02/2024


Xem thêm các chương trình khác: