Chứng minh vì sao số có ước lẻ là số chính phương

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 233 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 100)

Đề bài. Chứng minh vì sao số có ước lẻ là số chính phương.

Lời giải:

Gọi P là một số chính phương.

Ta có: P = k2 (k ℕ)

Giả sử k phân tích ra thừa số nguyên tố là k = ax.by.cz.... (a, b, c là các số nguyên tố)

P = (ax.by.cz....)2

P = a2x.b2y.c2z

Vì 2 chia hết cho 2 nên 2x, 2y, 2z, ... cũng chia hết cho 2

2x, 2y, 2z, ... là số chẵn

Số lượng ước của P là (2x + 1)(2y + 1)(2z + 1)...

Vì 2x, 2y, 2z, ... là số chẵn nên 2x + 1, 2y + 1, 2z + 1, ... là số lẻ

(2x + 1)(2y + 1)(2z + 1)... là số lẻ

Số lượng ước của P là 1 số lẻ

Vậy số chính phương luôn có số ước là 1 số lẻ.

1 233 17/02/2024


Xem thêm các chương trình khác: