Cho điểm A nằm ngoài đường tròn tâm O, từ A vẽ hai tiếp tuyến AB, AC

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 599 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 100)

Đề bài. Cho điểm A nằm ngoài đường tròn tâm O, từ A vẽ hai tiếp tuyến AB, AC; B và C là hai tiếp điểm và một cát tuyến ADE đến (O).

a) Chứng minh AB2 = AD.AE.

b) Gọi H là giao điểm của OA và BC. Chứng minh tứ giác DEOH nội tiếp, chứng minh HB là tia phân giác của EHD^ .

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 100) (ảnh 1)

a) Xét tam giác ABD và tam giác ABE có:

Chung A^

ABD^=AEB^(vì AB là tiếp tuyến (O))

∆ABD ∆AEB (g.g)

ABAE=ADAB

AB2 = AD.DE

b) Ta có: AB,AC là tiếp tuyến của (O)

AB OB, BC AO

BH AO

AB2 = AH.AO (Hệ thức lượng trong tam giác vuông)

AH.AO = AD.AE

AHAE=ADAO

DAH^=EAO^

∆ADH ∆AOE (c.g.c)

AHD^=AEO^

DHOE nội tiếp

AHD^=DEO^=EDO^=EHO^

DHB^=90°AHD^=90°EHO^=BHE^

Nên: HB là phân giác EHD^ .

1 599 17/02/2024


Xem thêm các chương trình khác: