Chứng minh rằng: 11^(n+2) + 12^(2n+1) chia hết cho 133

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 141 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 100)

Đề bài. Chứng minh rằng: 11n+2 + 122n+1 chia hết cho 133.

Lời giải:

11n+2 + 122n+1

= 121.11n + 12.144n

= (133 – 12).11n + 12.144n

= 133.11n + 12.(144n – 11n)

Ta thấy: 133.11n chia hết cho 133

144n – 11n chia hết cho (144 – 11) tức chia hết cho 133.

Vậy 133.11n + 12.(144n – 11n) chia hết cho 133 hay 11n+2 + 122n+1 chia hết cho 133.

1 141 17/02/2024


Xem thêm các chương trình khác: