Chứng minh n^3 + 20n chia hết cho 48 với mọi số n là số tự nhiên chẵn

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 624 02/02/2024


Chứng minh n3 + 20n chia hết cho 48 với mọi số n là số tự nhiên chẵn

Đề bài: Chứng minh n3 + 20n chia hết cho 48 với mọi số n là số tự nhiên chẵn.

Lời giải:

Giả sử n = 2k (k là số tự nhiên)

n3 + 20n = (2k)3 + 20 . 2k = 8k3 + 40k = 8k(k2 + 5)

Ta thấy 8 8 nên 8k(k2 + 5) 8 (1)

+ Nếu k chẵn thì k 2 k(k2 + 5) 2

+ Nếu k lẻ thì k2 lẻ k2 + 5 chẵn k(k2 + 5) 2

Vậy k(k2 + 5) 2 (2)

+ Nếu k 3 thì k(k2 + 5) 3

+ Nếu k chia 3 dư 1 thì k2 + 5 = (3l + 1)2 + 5 = 9l2 + 6l + 6 3 (với l là số tự nhiên)

+ Nếu k chia 3 dư 2 thì k2 + 5 = (3l + 2)2 + 5 = 9l2 + 12l + 9 3 (với l là số tự nhiên).

Vậy k(k2 + 5) 3 (3)

Từ (1), (2) và (3) suy ra: 8k(k2 + 5) 40.

Vậy n3 + 20n chia hết cho 48.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 624 02/02/2024


Xem thêm các chương trình khác: