Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 303 02/02/2024


Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có

Đề bài: Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Lời giải:

Ta lập dãy số như sau:

Đặt B1 = a1

B2 = a1 + a2

B = a1 + a2 + a3

….

B10 = a1 + a2 + a3 + … + a10

Nếu tồn tại Bi (i = 1, 2, 3, …, 10) nào đó chia hết cho 10 thì bài toán được chứng minh

Nếu không tồn tại Bi thì:

Ta đem Bi chia cho 10 sẽ được 10 số dư (các số dư từ 1 đến 9), Theo nguyên tắc Dirichlet, phải có ít nhất 2 số dư bằng nhau.

Các số Bm – Bn chia hết cho 10 (m > n)

Vậy thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 303 02/02/2024


Xem thêm các chương trình khác: