Cho tam giác đều ABC. Gọi M là điểm thuộc cạnh BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ M xuống AB và AC

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 163 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 100)

Đề bài. Cho tam giác đều ABC. Gọi M là điểm thuộc cạnh BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ M xuống AB và AC. Gọi I là trung điểm của AM, D là trung điểm của BC.

a, Tính góc DIE và góc DIF.

b, Chứng minh rằng: tứ giác DEIF là hình thoi.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 100) (ảnh 1)

a) + ΔAME vuông tại E có đường trung tuyến EI

EI = 12 AM EI = MI = AI

+ Tương tự ta có: DI = FI = AI = MI

Tam giác AEI cân tại I nên IAE^=IEA^

EIM^=2IAE^

Tương tự: MID^=2IAD^

EIM^+MID^=2IAE^+2IAD^

DIE^=2.30°=60°(do góc EAD^=30°)

DIF^=180°AIF^+MID^=180°180°2IAF^+180°2IMC^

DIF^=180°360°240°(do IAF^+IMC^=120° )

Suy ra: DIF^=60°

b) Tam giác DIE có: DI = EI mà DIE^=60° nên tam giác DIE đều

Suy ra: DI = EI = DE (1)

Tương tự: tam giác DIF đều vì DI = FI mà DIF^=60°

Suy ra: DI = FI = DF (2)

Từ (1) và (2) DE = EI = IF = DF

tứ giác DEIF là hình thoi.

1 163 17/02/2024


Xem thêm các chương trình khác: