Cho tam giác ABC, trực tâm H là trung điểm của đường cao AD. Chứng minh rằng: tanB.tanC = 2

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 281 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 100)

Đề bài. Cho tam giác ABC, trực tâm H là trung điểm của đường cao AD. Chứng minh rằng: tanB.tanC = 2.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 100) (ảnh 1)

Gọi M là giao điểm BH và AC

Do H là trực tâm nên AM AC

Ta có: HBD^=90°BHD^=90°MHA^=MAH^=CAD^

Xét tam giác BHD và tam giác ACD có:

HBD^=CAD^

BDH^=ADC^=90°

Suy ra: ∆BHD ∆ACD (g.g)

HDBD=CDAD

AD2BD=CDAD (do H là trung điểm AH nên 2HD = AD)

ADBD.ADCD=2

Xét trong tam giác vuông ABD có: tanB = ADBD

Trong tam giác vuông ADC có: tanC = ADCD

Suy ra: tanB.tanC = 2.

1 281 17/02/2024


Xem thêm các chương trình khác: