Cho tam giác ABC đều. Trên tia đối của AB lấy điểm D, trên tia đối của BC lấy điểm E

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 173 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 100)

Đề bài. Cho tam giác ABC đều. Trên tia đối của AB lấy điểm D, trên tia đối của BC lấy điểm E, trên tia đối của CA lấy điểm F sao cho AD = BE = CF. Chứng minh rằng tam giác DEF đều.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 100) (ảnh 1)

Xét tam giác EBD và tam giác FCE có:

EC = DB (vì AB = BC; AD = EB nên EB + BC = AB + AD)

EBD^=FCE^(cùng là 2 góc ngoài của 1 tam giác đều)

EB = FC (giả thiết)

Suy ra: ∆EBD = ∆FCE (c.g.c)

DE = EF (1)

Chứng minh tương tự: ∆EBD = ∆DAF (c.g.c)

DE = FD (2)

Từ (1) và (2): DE = DF = EF

Vậy tam giác DEF đều.

1 173 17/02/2024


Xem thêm các chương trình khác: