Tính bán kính đường tròn ngoại tiếp hình thang cân biết  hình thang cân ABCD

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 787 02/02/2024


Tính bán kính đường tròn ngoại tiếp hình thang cân biết hình thang cân ABCD

Đề bài: Tính bán kính đường tròn ngoại tiếp hình thang cân biết hình thang cân ABCD (AB song song CD) có AB = 6cm; CD = 8cm và đường cao AH = 7cm.

Lời giải:

Tài liệu VietJack

Gọi M, N theo thứ tự là trung điểm của các cạnh đáy AB,CD của hình thang cân ABCD.

MN là trục đối xứng của hình tháng cân nên MN là đường trung trực của AB và CD.

Gọi O là giao điểm của MN với đường trung trực của BC.

O thuộc đường trung trực của AB nên OA = OB.

O thuộc đường trung trực của BC nên OB = OC.

O thuộc đường trung trực của CD nên OC = OD.

Vậy OA = OB = OC = OD, do đó đường tròn (O; OA) đi qua các điểm A, B, C, D.

Ta có AH = MN = 7cm (vì cùng là chiều cao của hình thang cân)

Theo định lý Pytago ta có:

OA2 = OM2 + MA2

OD2 = ON2 + DN2

Mà OA = OD

Nên: OM2 + MA2 = ON2 + DN2

(MN – ON)2 + 32 = ON2 + 42

(7 – ON)2 = ON2 + 7

49 – 14ON + ON2 = ON2 + 7

ON = 3 (cm)

OD2 = 32 + 42 = 25

Suy ra: OD = 5 (cm) vì OD > 0.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 787 02/02/2024


Xem thêm các chương trình khác: