Hàm số y = x^3 – 3x^2 + 2 nghịch biến trên khoảng nào

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 724 27/11/2024


Hàm số y = x3 – 3x2 + 2 nghịch biến trên khoảng nào

Đề bài: Hàm số y = x3 – 3x2 + 2 nghịch biến trên khoảng nào?

Lời giải:

Ta có y’ =3x2 – 6x = 0

Bảng biến thiên:

Tài liệu VietJack

Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên khoảng (0; 2).

*Phương pháp giải:

1. Đạo hàm

2. Tìm nghiệm đạo hàm

3. Lập bảng biến thiên xét dấu

4.kết luận

*Lý thuyết

. Định nghĩa.

Cho hàm số y = f(x) xác định trên K, với K là một khoảng, nửa khoảng hoặc một đoạn.

- Hàm số y = f(x) đồng biến (tăng) trên K nếu ∀ x1, x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).

- Hàm số y = f(x) nghịch biến (giảm) trên K nếu ∀ x1, x2 ∈ K, x1 < x2 ⇒ f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu.

Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

– Nếu hàm số đồng biến trên khoảng K thì f'(x) ≥ 0, ∀ x ∈ K

– Nếu hàm số nghịch biến trên khoảng K thì f'(x) ≤ 0, ∀ x ∈ K.

3. Điều kiện đủ để hàm số đơn điệu.

Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

– Nếu f'(x) > 0, ∀x ∈ K thì hàm số đồng biến trên khoảng K.

– Nếu f'(x) < 0, ∀x ∈ K thì hàm số nghịch biến trên khoảng K.

– Nếu f'(x) = 0, ∀x ∈ K thì hàm số không đổi trên khoảng K.

Lưu ý

– Nếu f'(x) ≥ 0, x K (hoặc f'(x) ≤ 0, x K) và f'(x) = 0 chỉ tại một số điểm hữu hạn của K thì hàm số đồng biến trên khoảng K (hoặc nghịch biến trên khoảng K).

Xem thêm

50 bài tập về sự đồng biến và nghịch biến của hàm số (có đáp án 2024) – Toán 12

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 724 27/11/2024


Xem thêm các chương trình khác: