Cho hình chóp SABCD có đáy là hình bình hành ABCD

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 130 17/02/2024


15000 câu hỏi ôn tập Toán (Phần 99)

Đề bài. Cho hình chóp SABCD có đáy là hình bình hành ABCD. Gọi M, N lần lượt là trung điểm AB, SC.

a) Xác định giao điểm I, K của AN, MN với (SBD).

b) Tính tỉ số IAIN;KMKN.

c) Chứng minh B, I, K thẳng hàng. Tính tỉ số IBIK.

Lời giải:

15000 câu hỏi ôn tập môn Toán có đáp án (Phần 99) (ảnh 1)

a) Gọi AC ∩ BD = O, SO ∩ AN = I

AN ∩ (SBD) = I

CM ∩ BO = E, SE ∩ MN = K MN ∩ (SBD) = K

b, c) Ta có M, N là trung điểm AB, SC; O là trung điểm AC, BD

I, E là trọng tâm SAC, BAC

IAIN=2

Ta có: M, K, N thẳng hàng; M CE, K SE, N SC

Suy ra: MCME.KEKS.NSNC=1

3.KEKS.1=1

KEKS=13

BOBE.KEKS.ISIO=32.13.2=1

Vậy B, I, K thẳng hàng (định lý Menelauyt)

Ta có: S, K, E thẳng hàng nên SCSN.KNKM.EMEC=1

Lại có từ S, K, E thẳng hàng nên SOSI.KIKB.EBEO=1

32.KIKB.2=1

KIKB=13

KIKB+KI=13+1

Hay KIIB=14

Suy ra: IBIK=4.

1 130 17/02/2024


Xem thêm các chương trình khác: