Chứng minh n^5 – n chia hết cho 30 với mọi số nguyên n

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 435 03/04/2024


15000 câu hỏi ôn tập Toán (Phần 105)

Đề bài. Chứng minh n5 – n chia hết cho 30 với mọi số nguyên n.

Lời giải:

n5 – n = n(n4 – 1)

= n(n2 – 1)(n2 + 1)

= n(n – 1)(n + 1)(n2 + 1)

= n(n – 1)(n + 1)(n2 – 4 + 5)

= n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1)

Vì n(n – 1)(n + 1)(n – 2)(n + 2) là tích của 5 số nguyên liên tiếp nên n(n – 1)(n + 1)(n – 2)(n + 2) chia hết cho 5

Và 5n(n – 1)(n +1) chia hết cho 5

Nên: n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1) 5 (1)

Lại có: n(n – 1)(n + 1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Suy ra: n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1) 6 (2)

Từ (1) và (2) ta có: n(n – 1)(n + 1)(n – 2)(n + 2) + 5n(n – 1)(n +1) 30

Vậy n5 – n chia hết cho 30 với mọi số nguyên n.

1 435 03/04/2024


Xem thêm các chương trình khác: