Cho tam giác ABC. Gọi H là trực tam của tam giác. Chứng minh rằng

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 324 02/02/2024


Cho tam giác ABC. Gọi H là trực tam của tam giác. Chứng minh rằng

Đề bài: Cho tam giác ABC. Gọi H là trực tam của tam giác. Chứng minh rằng:

AH2 + BC2 = BH2 + AC2

Lời giải:

Tài liệu VietJack

Gọi I là giao điểm của CH và AB.

Áp dụng định lý Py-ta-go cho các tam giác vuông AHI, BHI, ACI, BCI ta có:

AH2 = AI2 + HI2 AH2 – AI2 = HI2

BH2 = IH2 + BI2 BH2 – BI2 = IH2

AC2 = AI2 + IC2 AC2 – AI2 = IC2

BC2 = BI2 + IC2 BC2 – BI2 = IC2 

Suy ra:

AH2 – AI2 = BH2 – BI2 (1)

AC2 – AI2 = BC2 – BI2 (2)

Trừ (2) cho (1) ta được:

AC2 – AH2 = BC2 – BH2

AH2 + BC2 = BH2 + AC2 (đpcm)

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 324 02/02/2024


Xem thêm các chương trình khác: