Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 107 03/04/2024


15000 câu hỏi ôn tập Toán (Phần 105)

Đề bài. Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MNBC tại E và F.

a) Chứng minh E và F đối xứng với nhau qua AB.

b) Chứng minh tứ giác MEBF là hình thoi.

c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.

Lời giải:

a) Do AM = DN suy ra: MADN là hình bình hành

D^=AMN^=EMB^=MBC^

Ta có ∆MPE = ∆BPE nên EP = FP.

Vậy MEBF là hình thoi và 2 điểm E, F đối xứng nhau qua AB.

b) Tứ giác MEBF có MB ∩ EF = P

Lại có P trung điểm BM, P là trung điểm EF, MB EF.

Suy ra: MEBF là hình thoi.

c) Để BNCE là hình thang cân thì CNE^=BEN^

D^=CNE^=EMB^=MBC^ nên ∆MEB có 3 góc bằng nhau, suy ra điều kiện để BNCE là hình thang cân thì ABC^=60.

1 107 03/04/2024


Xem thêm các chương trình khác: