Cho tam giác ABC cân tại A đường cao AH và BK cắt nhau tại I

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 2,070 02/02/2024


Cho tam giác ABC cân tại A đường cao AH và BK cắt nhau tại I

Đề bài: Cho tam giác ABC cân tại A đường cao AH và BK cắt nhau tại I. Chứng minh:

a) Đường tròn đường kính AI đi qua K.

b) HK là tiếp tuyến của đường tròn đường kính AI.

Lời giải:

Tài liệu VietJack

a)

Gọi F là trung điểm của AI

Do BK là đường cao của tam giác ABC nên BKA^=90°

Xét tam giác AKI vuông tại K có:

KF là đường trung tuyến ứng với cạnh huyền.

Do đó, KF = FI = FA

Vậy K nằm trên đường tròn đường kính AI.

b)

Xét tam giác AKF có: FA =FK (cmt)

Do đó, AKF cân tại F

FAK^=FKA^ (1)

Do AH là đường cao của tam giác ABC cân tại A nên ta AH cũng là đường trung tuyến hay H là trung điểm của BC

Xét tam giác CKB vuông tại K có:

KH là đường trung tuyến ứng với cạnh huyền

KH = CH = BH

Xét tam giác CHK có: CH = HK (cmt)

Do đó, tam giác CHK cân tại H  HCK^=HKC^ (2)

Xét tam giác AHC vuông tại H có: FAK^+HCK^=90° (3)

Từ (1), (2) và (3) ta có: FKA^+HKC^=90°

FKH^=90°

Do đó, HK vuông góc với FK mà FK là bán kính của đường tròn đường kính AI.

Vậy HK là tiếp tuyến của đường tròn đường kính AI.

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 2,070 02/02/2024


Xem thêm các chương trình khác: