Một nhóm học sinh gồm 7 bạn nam và 4 nữ đứng ngẫu nhiên thành một hàng

Vietjack.me giới thiệu bộ câu hỏi ôn tập Toán có đáp án được biên soạn bám sát chương trình học giúp bạn ôn luyện và bổ sung kiến thức môn Toán tốt hơn. Mời các bạn đón xem:

1 1,353 19/11/2024


Một nhóm học sinh gồm 7 bạn nam và 4 nữ đứng ngẫu nhiên thành một hàng

Đề bài: Một nhóm học sinh gồm 7 bạn nam và 4 nữ đứng ngẫu nhiên thành một hàng. Xác suất để có đúng 2 trong 4 bạn nữ đứng cạnh nhau là bao nhiêu?

Lời giải:

Xếp 7 bạn nam đứng thành hàng, có 7! cách (tạo ra 8 khoảng trống).

Chọn 2 nữ đứng cạnh nhau, có C42 cách.

Chọn 3 khoảng trống trong 8 khoảng trống để xếp các nữ, có A83.2! cách.

Vậy xác suất cần tìm là: C42.2.7!.A8311!=2855 .

*Phương pháp giải:

Áp dụng quy tắc cộng, quy tắc nhân và công thức hoán vị.

*Lý thuyết:

1. Hoán vị

Một hoán vị của một tập hợp có n phần tử là một cách sắp xếp có thứ tự n phần tử đó (với n là một số tự nhiên, n ≥ 1).

Số các hoán vị của tập hợp có n phần tử, kí hiệu là Pn, được tính bằng công thức

Pn = n.(n – 1).(n – 2) … 2.1.

Chú ý :

+ Kí hiệu n.(n – 1).(n – 2) … 2.1 là n! (đọc là n giai thừa), ta có : Pn = n!.

Chẳng hạn với n = 3 ta có P3 = 3! = 3.2.1 = 6.

+ Quy ước 0! = 1.

Ví dụ : Từ 3 chữ số 1, 6, 9 có thể lập được bao nhiêu số có ba chữ số khác nhau ?

Hướng dẫn giải

Mỗi cách sắp xếp ba chữ số đã cho để lập thành một số có ba chữ số khác nhau là một hoán vị của ba chữ số đó.

Do đó ta có số các số thỏa mãn là: P3 = 3! = 3.2.1 = 6 (số).

Vậy có 6 số có ba chữ số khác nhau lập từ ba chữ số 1, 6, 9.

2. Chỉnh hợp

Một chỉnh hợp chập k của n là một cách sắp xếp có thứ tự k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 1 ≤ k ≤ n).

Số các chỉnh hợp chập k của n, kí hiệu là Ank, được tính bằng công thức:

Ank = n.(n – 1)…(n – k + 1) hay Ank=n!(nk)!(1 ≤ k ≤ n).

Chú ý :

+ Hoán vị sắp xếp tất cả các phần tử của tập hợp, còn chỉnh hợp chọn ra một số phần tử và sắp xếp chúng.

+ Mỗi hoán vị của n phần tử cũng chính là một chỉnh hợp chập n của n phần tử đó. Vì vậy Pn = Ann

Ví dụ: Một nhóm có 8 học sinh, giáo viên muốn chọn ra hai bạn, trong đó một bạn làm nhóm trưởng và một bạn làm nhóm phó. Hỏi có bao nhiêu cách chọn ?

Hướng dẫn giải

Mỗi cách chọn lần lượt 2 bạn trong 8 bạn, một bạn làm nhóm trưởng và một bạn làm nhóm phó là một chỉnh hợp chập 2 của 8 học sinh.

Ta có : A82=8!(82)!=56

Vậy có 56 cách chọn ra 2 trong 8 bạn, một bạn làm nhóm trưởng, một bạn làm nhóm phó.

3. Tổ hợp

Một tổ hợp chập k của n là một cách chọn k phần tử từ một tập hợp n phần tử (với k, n là các số tự nhiên, 0 ≤ k ≤ n).

Số các tổ hợp chập k của n, kí hiệu là Cnk, được tính bằng công thức :

Cnk=n!(nk)!k!(0kn)

Chú ý :

+) <Cnk=Ankk!

+) Chỉnh hợp và tổ hợp có điểm giống nhau là đều chọn một số phần tử trong một tập hợp, nhưng khác nhau ở chỗ, chỉnh hợp là chọn có xếp thứ tự, còn tổ hợp là chọn không xếp thứ tự.

Xem thêm

Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - Toán 10 Kết nối tri thức

Xem thêm

Xem thêm các câu hỏi ôn tập Toán chọn lọc, hay khác:

1 1,353 19/11/2024


Xem thêm các chương trình khác: