SBT Toán 8 Bài 8: Các trường hợp đồng dạng của tam giác vuông

Với giải sách bài tập Toán lớp 8 Bài 8: Các trường hợp đồng dạng của tam giác vuông chi tiết được Giáo viên nhiều năm kinh nghiệm biên soạn bám sát nội dung sách bài tập Toán 8 Tập 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 8. 

1 1,520 19/09/2022
Tải về


Mục lục Giải SBT Toán 8 Bài 8: Các trường hợp đồng dạng của tam giác vuông

Bài 44 trang 95 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A, AC = 9cm, BC = 24cm. Đường trung trực của BC cắt đường thẳng AC tại D, cắt BC tại M. Tính độ dài của đoạn thẳng CD.

Tài liệu VietJack

Lời giải:

Xét hai tam giác vuông ABC và MDC, ta có:

BAC^=DMC^=90°

C^ chung

Suy ra tam giác ABC đồng dạng với tam giác MDC (g.g)

Suy ra: ACMC  =BCDC 

Suy ra: DC=  MC.  BCAC

Ta có: MC = 12.BC = 12.24 = 12 (cm)

Vây DC = 12.249  =32 (cm).

Bài 45 trang 95 SBT Toán 8 Tập 2: Cho hình thang vuông ABCD ( A^=D^=90°); AB = 6cm, CD = 12cm, AD = 17cm. Trên cạnh AD, đặt đoạn AE = 8cm. Chứng minh BEC^ =90°.

Tài liệu VietJack

Lời giải:

Ta có: AD = AE + DE

Suy ra: DE = AD – AE = 17 – 8 = 9cm

Xét ΔABE và ΔDEC, ta có:

 A^=D^ = 90o (1)

Mà : ABDE  =  69  =  23AEDC=  812  =  23

Suy ra: ABDE  =  AEDC  (2)

Từ (1) và (2) suy ra :ΔABE đồng dạng ΔDEC (c.g.c)

Suy ra: ABE^=DEC^ 

Trong ΔABE ta có: A^ = 90o 

AEB^+ABE^=90° 

Suy ra: AEB^+DEC^ = 90o

Lại có: AEB^+BEC^+DEC^=AED^=180°

Vậy : BEC^ = 180o - AEB^+DEC^

= 180o - 90o = 90o

Bài 46 trang 95 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A, AC = 4cm, BC = 6cm. Kẻ tia Cx vuông góc với BC (tia Cx và điểm A khác phía so với đường thẳng BC). Lấy trên Cx điểm D sao cho BD = 9cm. Chứng minh rằng BD // AC.

Tài liệu VietJack

Lời giải:

Xét hai tam giác vuông ABC và CDB, ta có:

 BAC^=DCB^ = 90o (1)

Mà: ACCB  =  46  =  23;  CBBD  =  69  =  23 .

Suy ra: ACCB  =CBBD  (2).

Từ (1) và (2) suy ra: ΔABC đồng dạng ΔCDB (cạnh huyền và cạnh góc vuông tỉ lệ)

Suy ra: ACB^=CBD^

⇒ BD // AC ( hai góc ở vị trí so le trong bằng nhau).

Bài 47 trang 95 SBT Toán 8 Tập 2: Trên hình vẽ hãy chỉ ra các tam giác đồng dạng. Viết các cặp tam giác đồng dạng theo thứ tự các đỉnh tương ứng và giải thích vì sao chúng đồng dạng.

Tài liệu VietJack

Lời giải:

- ΔABC đồng dạng ΔHBA

Vì hai tam giác vuông có góc nhọn ở đỉnh B chung.

- ΔABC đồng dạng ΔHAC

Vì hai tam giác vuông có góc nhọn ở đỉnh C chung

- ΔABC đồng dạng ΔNMC

Vì hai tam giác vuông có góc nhọn ở đỉnh C chung

- ΔHAC đồng dạng ΔNMC

Vì hai tam giác vuông có góc nhọn ở đỉnh C chung

- ΔHAC đồng dạng ΔHBA

Vì hai tam giác vuông có góc nhọn HBA^=HAC^ (cùng phụ với BAH^)

- ΔHAB đồng dạng ΔNCM

Vì hai tam giác vuông có góc nhọn HAB^=NCM^ (cùng phụ với HAC^)

Bài 48 trang 95 SBT Toán 8 Tập 2: Cho tam giác ABC ( A^ = 90o) có đường cao AH. Chứng minh rằng AH2 = BH.CH.

Lời giải:

Tài liệu VietJack

Xét hai tam giác vuông HBA và HAC, ta có:

AHB^=AHC^=90°

 B^=HAC^ (hai góc cùng phụ C^)

Suy ra: ΔHBA đồng dạng ΔHAC (g.g)

Suy ra: HAHB  =  HCHA

Vậy AH2 = BH.CH  (điều phải chứng minh).

Bài 49 trang 96 SBT Toán 8 Tập 2: Đường cao của một tam giác vuông xuất phát từ đỉnh góc vuông chia cạnh huyền thành hai đoạn thẳng có dộ dài là 9cm và 16cm. Tính độ dài các cạnh của tam giác vuông.

Tài liệu VietJack

Lời giải:

Xét hai tam giác vuông DAC và DBA ,ta có:

ADC^=BDA^ = 90o

C^=DAB^  (hai góc cùng phụ B^)

Suy ra: ΔDAC đồng dạng ΔDBA (g.g)

Suy ra: DBDA=DADC  =  ABAC

⇒ DA2 = DB.DC

hay DA=  DB.  DC  =  9.16  =12(cm).

Áp dụng định lí Pi-ta-go vào tam giác vuông ABD, ta có:

AB2 = DA2 + DB2 = 92 + 122 = 225 ⇒ AB =15 (cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông ACD,ta có:

AC2 = DA2 + DC2 = 122 +162 = 400 ⇒ AC = 20cm

Vậy BC = BD + DC = 9 + 16 = 25(cm).

Bài 50 trang 96 SBT Toán 8 Tập 2: Tam giác vuông ABC ( A^ = 90o) có đường cao AH và trung tuyến AM. Tính diện tích tam giác AMH, biết rằng BH = 4cm, CH = 9cm

Tài liệu VietJack

Lời giải:

Xét hai tam giác vuông HBA và HAC có:

BHA^=AHC^ = 90o

B^=HAC^ (hai góc cùng phụ C^)

Do đó: ΔHBA đồng dạng ΔHAC (g.g)

Suy ra: HAHB  =  HCHA 

⇒ HA2 = HB.HC = 4.9 = 36(cm)

Suy ra: AH = 6 (cm)

Lại có: BM = 12BC = 12.(9 + 4) =  12.13 = 6,5cm

Mà HM = BM – BH = 6,5 – 4 = 2,5cm

Vậy SAHM = 12.AH.HM =  12.6.2,5 = 7,5cm2

Bài tập bổ sung

Bài 8.1 trang 96 SBT Toán 8 Tập 2: Cho góc nhọn xOy. Trên tia Ox lấy một điểm A sao cho OA = 8,65cm...

Bài 8.2 trang 96 SBT Toán 8 Tập 2: Tam giác ABC vuông tại A có đường cao AH = n = 10,85cm và cạnh AB = m = 12,5cm...

Bài 8.3 trang 96 SBT Toán 8 Tập 2: Cho tam giác ABC vuông tại A, chân H của đường cao AH chia cạnh huyền BC thành hai đoạn...

Xem thêm lời giải sách bài tập Toán lớp 8 hay, chi tiết khác:

Ôn tập chương 3 - Hình học

Bài 1: Hình hộp chữ nhật

Bài 2: Hình hộp chữ nhật (tiếp)

Bài 3: Thể tích của hình hộp chữ nhật

Bài 4: Hình lăng trụ đứng

Xem thêm tài liệu khác Toán học lớp 8 hay, chi tiết khác:

Lý thuyết Các trường hợp đồng dạng của tam giác vuông

Trắc nghiệm Trường hợp đồng dạng của tam giác vuông có đáp án

1 1,520 19/09/2022
Tải về


Xem thêm các chương trình khác: