Lý thuyết Các trường hợp đồng dạng của tam giác vuông (mới 2023 + Bài Tập) – Toán 8
Lý thuyết Các trường hợp đồng dạng của tam giác vuông lớp 8 gồm lý thuyết chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm Toán 8 Bài 8: Các trường hợp đồng dạng của tam giác vuông.
Lý thuyết Toán 8 Bài 8: Các trường hợp đồng dạng của tam giác vuông
Bài giảng Toán 8 Bài 8: Các trường hợp đồng dạng của tam giác vuông
A. Lý thuyết
1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông
Hai tam giác vuông đồng dạng với nhau nếu:
+ Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.
+ Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.
2. Dấu hiệu đặc biệt nhận biết hai tam vuông đồng dạng
- Định lý 1: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
3. Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng
- Định lý 2: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.
Cho hai tam giác ABC và A’B’C’ với tỉ số đồng dạng là , hai đường cao tương ứng là AH và A’H’.
Khi đó, ta có tỉ số hai đường cao là: .
- Định lý 3: Tỉ số diện tích hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.
Ví dụ 1. Cho tam giác ABC đồng dạng với tam giác MNP theo tỉ số . Biết đường cao xuất phát từ A của tam giác ABC là AH = 12cm. Tính đường cao xuất phát từ M của tam giác MNP?
Lời giải:
Gọi đường cao xuất phát từ M của tam giác MNP là MK.
Vì tam giác ABC đồng dạng với tam giác MNP theo tỉ số nên
B. Bài tập tự luyện
Bài 1. Cho tam giác ABC vuông tại A có chân đường cao AH chia cạnh huyền BC thành hai đoạn thẳng có độ dài lần lượt là HB = 16 cm và HC = 25 cm. Tính diện tích của tam giác ABC?
Lời giải:
Xét tam giác AHB và tam giác CHA có:
(cùng phụ )
Suy ra: ∆AHB ∆CHA (g.g).
Hay
Ta có:
Bài 2. Cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A lên BC. Biết AB = 5cm; AC = 12cm.
a) Tính BH?
b) Chứng minh ∆AHB ∆CHA
Lời giải:
a) Áp dụng định lí Pyata go vào tam giác vuông ABC có:
BC2 = AB2 + AC2 = 25 + 144= 169 nên BC = 13cm
Xét ∆ABC và ∆ HBA có:
chung
Suy ra: ∆ABC ∆HBA (g.g)
b) Xét ∆AHB và ∆CHA có:
(cùng phụ với góc )
Suy ra: ∆AHB ∆CHA (g.g).
Bài 3. Cho tam giác ABC vuông tại A. Dựng hai đường phân giác trong BH; CN của góc B và góc C. Hai đường này cắt nhau tại I. Gọi K là hình chiếu vuông góc của I lên BC. Chứng minh:
a) ∆IKC ∆NAC
b) ∆IKB ∆HAB.
Lời giải:
a) Xét ∆IKC và ∆NAC có:
(vì CN là tia phân giác của )
Suy ra: ∆IKC ∆NAC (g.g) ( đpcm)
b) Xét ∆IKB và ∆HAB có:
(vì BH là tia phân giác của )
Suy ra: ∆IKB ∆HAB (g.g) (đpcm)
Trắc nghiệm Toán 8 Bài 8: Trường hợp đồng dạng của tam giác vuông
Bài 1: Cho tam giác ABC cân tại A. Đường thẳng qua C và vuông góc AB tại CE. Tính AB, biết BC = 18cm và BE = 6,75cm.
A. 16cm
B. 32cm
C. 24cm
D. 18cm
Đáp án: C
Giải thích:
Kẻ đường cao AD.
Xét ΔCBE và ΔABD có
Bài 2: Cho tam giác ABC, phân giác AD. Gọi E, F lần lượt là hình chiếu của B và C lên AD. Chọn khẳng định không đúng.
A. AE.CF = AF.BE
B. AE.DF = ED2
C. AE.DF = AF.DE
D.
Đáp án: B
Giải thích:
Bài 3: Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Tính độ dài các đoạn thẳng HA, HB.
A. HA = 2,4cm; HB = 1,2cm
B. HA = 2cm; HB = 1,8cm
B. HA = 2cm; HB = 1,2cm
D. HA = 2,4cm; HB = 1,8cm
Đáp án: D
Giải thích:
Bài 4: Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn thẳng HB = 7cm và HC = 18cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
A. 15cm
B. 12cm
C. 10cm
D. 8cm
Đáp án: A
Giải thích:
Gọi D là giao điểm của AC và đường vuông góc với BC tại E.
Xét ΔAHC và ΔABC có C chung và AHC^ = BAC^ = 900 nên ΔAHC ~ ΔBAC (g-g)
Bài 5: Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Chọn kết luận không đúng.
A. HA = 2,4cm
B. HB = 1,8cm
C. HC = 3,2cm
D. BC = 6cm
Đáp án: D
Giải thích:
Bài 6: Cho các mệnh đề sau. Chọn câu đúng.
(I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng
A. (I) đúng, (II) sai
B. (I) sai, (II) đúng
C. (I) và (II) đều sai
D. (I) và (II) đều đúng
Đáp án: A
Giải thích:
Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Vậy (I) đúng, (II) sai
Bài 7: Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD.
1. Chọn kết luận đúng.
A. AD = 6cm
B. DC = 5cm
C. AD = 5cm
D. BC = 12cm
Đáp án: B
Giải thích:
+ Áp dụng định lý Pitago trong tam giác vuông ABC ta có:
AB2 + AC2 = BC2 62 + 82 = BC2
BC2 = 100 => BC = 10cm
+ Vì BD là đường phân giác của tam giác ABC nên áp dụng tính chất đường phân giác của tam giác, ta có:
=> AD = 3cm
=> DC = AC - AD = 8 - 3 = 5cm
2. Chọn khẳng định đúng.
A. AB.BI = BD.HB
B. AB.BI = AI2
B. AB.BI = BD2
D. AB.BI = HI2
Đáp án: A
Giải thích:
Bài 8: Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 3,5cm và HC = 9cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
A. 10cm
B. 6cm
C. 5cm
D. 7,5cm
Đáp án: D
Giải thích:
Gọi D là giao điểm của AC và đường vuông góc với BC tại E.
Xét ΔAHC và ΔABC có C chung và AHC^ = BAC^ = 900 nên ΔAHC ~ ΔBAC (g-g)
Bài 9: Cho hai tam giác vuông. Điều kiện để hai tam giác vuông đó đồng dạng là:
A. Có hai cạnh huyền bằng nhau
B. có 1 cặp cạnh góc vuông bằng nhau
C. Có hai góc nhọn bằng nhau
D. không cần điều kiện gì
Đáp án: C
Giải thích:
Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Bài 10: Cho hình vẽ dưới đây với .
Khi đó các mệnh đề
(I) ΔAHB ~ ΔCHA (g - g)
(II) ΔAHC ~ ΔBAC (g - g)
A. (I) đúng
B. (II) đúng
C. Cả (I) và (II) đều sai
D. Cả (I) và (II) đều đúng
Đáp án: D
Giải thích:
Xét 2 tam giác vuông AHB và CHA có: BAH^ = ACH^ (gt)
=> ΔAHB ~ ΔCHA (g - g)
=> (I) đúng
Xét 2 tam giác vuông AHC và BAC có:
C chung
=> ΔAHC ~ ΔBAC (g - g)
=> (II) đúng
Vậy cả (I) và (II) đều đúng.
Xem thêm các bài tổng hợp lý thuyết Toán lớp 8 đầy đủ, chi tiết khác:
Lý thuyết Hình hộp chữ nhật (tiếp)
Xem thêm các chương trình khác:
- Tóm tắt tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 8 (hay nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Soạn văn 8 (ngắn nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Văn mẫu lớp 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Hóa học 8
- Giải sbt Hóa học 8
- Giải vở bài tập Hóa học 8
- Lý thuyết Hóa học 8
- Các dạng bài tập Hóa học lớp 8
- Giải sgk Vật Lí 8
- Giải sbt Vật Lí 8
- Lý thuyết Vật Lí 8
- Giải vở bài tập Vật lí 8
- Giải sgk Tiếng Anh 8 (sách mới) | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2
- Giải sgk Tiếng Anh 8 | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 8 (sách mới) | Sách bài tập Tiếng Anh 8
- Giải sbt Tiếng Anh 8 (thí điểm)
- Giải sgk Tin học 8 | Giải bài tập Tin học 8 Học kì 1, Học kì 2 (sách mới)
- Giải sgk Lịch Sử 8 | Giải bài tập Lịch sử 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch sử 8 (sách mới) | Kiến thức trọng tâm Lịch sử 8
- Giải vở bài tập Lịch sử 8
- Giải Tập bản đồ Lịch sử 8
- Đề thi Lịch Sử 8
- Giải vở bài tập Sinh học 8
- Giải sgk Sinh học 8
- Lý thuyết Sinh học 8
- Giải sgk Giáo dục công dân 8 | Giải bài tập Giáo dục công dân 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Giáo dục công dân 8 (sách mới) | Kiến thức trọng tâm GDCD 8
- Lý thuyết Địa Lí 8 (sách mới) | Kiến thức trọng tâm Địa Lí 8
- Giải sgk Địa Lí 8 | Giải bài tập Địa Lí 8 Học kì 1, Học kì 2 (sách mới)
- Giải Tập bản đồ Địa Lí 8
- Đề thi Địa lí 8