Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp theo) (năm 2023 + Bài Tập) – Toán 8
Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp theo) lớp 8 gồm lý thuyết chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm Toán 8 Bài 4: Những hằng đẳng thức đáng nhớ (tiếp theo).
Lý thuyết Toán 8 Bài 4: Những hằng đẳng thức đáng nhớ (tiếp theo)
Bài giảng Toán 8 Bài 4: Những hằng đẳng thức đáng nhớ (tiếp theo)
A. Lý thuyết
1. Lập phương của một tổng
Lập phương của một tổng bằng lập phương số thứ nhất cộng ba lần tích của bình phương số thứ nhất nhân số thứ hai cộng ba lần tích của số thứ nhất nhân bình phương số thứ hai cộng lập phương số thứ hai.
Với A, B là các biểu thức tùy ý, ta có: (A + B)3 = A3 + 3A2B + 3AB2 + B3.
Ví dụ 1:
(2m + n)3 = (2m)3 + 3.(2m)2.n + 3.2m.n2 + n3
= 8m3 + 12m2n + 6mn2 + n3.
2. Lập phương của một hiệu
Lập phương của một hiệu bằng lập phương số thứ nhất trừ ba lần tích của bình phương số thứ nhất nhân số thứ hai cộng ba lần tích của số thứ nhất nhân bình phương số thứ hai trừ lập phương số thứ hai.
Với A, B là các biểu thức tùy ý, ta có: (A – B)3 = A3 – 3A2B + 3 AB2 – B3
Ví dụ 2:
(x2 – y)3 = (x2)3 – 3.(x2)2.y + 3.x2.y2 – y3 = x6 – 3x4y + 3x2y2 – y3.
B. Bài tập tự luyện
Bài 1: Khai triển các hằng đẳng thức sau:
Lời giải:
b) (x2 + 1)3 = (x2)3 + 3.(x2)2.1 + 3.x2.12 + 13 = x6 + 3x4 + 3x2 + 1
Bài 2: Tính giá trị biểu thức.
a) P = x3 – 3x2 + 3x – 1 tại x = 1001.
b) Q = 27x3y6 – 54x2y4z + 36xy2z2 – 8z3 tại x = 4; y = 5; z = 150.
c) R = y3 + 3y2(1 – y) + 3y(1 – y)2 + (1 – y)3 tại y = 1000.
Lời giải:
a) P = x3 – 3x2 + 3x – 1
P = (x – 1)3
Thay x = 1001 vào P, ta được: P = (1001 – 1)3 = 10003 = 1 000 000 000.
b) Q = 27x3y6 – 54x2y4z + 36xy2z2 – 8z3
Q = (3xy2)3 – 3.(3xy2)2.2z + 3.3xy2.(2z)2 – (2z)3
Q = (3xy2 – 2z)3
Thay x = 4; y = 5; z = 150 vào Q, ta được: Q = (3.4.52 – 2.150)3 = 0.
c) R = y3 + 3y2(1 – y) + 3y(1 – y)2 + (1 – y)3
R = (y + 1 – y)3
R = 13
R = 1.
Vậy R = 1.
Bài 3: Tính nhanh
a) A = 1023 – 6.1022 + 12.102 – 8;
b) B = 473 + 9.472 + 27.47 + 27.
Lời giải:
a) A = 1023 – 6.1022 + 12.102 – 8
A = 1023 – 3.1022.2 + 3.102.22 – 23
A = (102 – 2)3
A = 1003
A= 1 000 000
b) B = 473 + 9.472 + 27.47 + 27
B = 473 + 3.472.3+ 3.47.32 + 33
B = (47 + 3)3
B = 503
B = 125 000
Trắc nghiệm Toán 8 Bài 4: Những hằng đẳng thức đáng nhớ (tiếp theo)
Bài 1: Chọn câu đúng.
A. (A + B)3 = A3 + 3A2B + 3AB2 + B3
B. (A - B)3 = A3 - 3A2B - 3AB2 - B3
C. (A + B)3 = A3 + B3
D. (A - B)3 = A3 - B3
Đáp án: A
Giải thích:
Ta có (A + B)3 = A3 + 3A2B + 3AB2 + B3
nên phương án C sai, A đúng.
(A - B)3 = A3 - 3A2B + 3AB2 - B3
nên phương án B sai, D sai.
Bài 2: Chọn câu đúng. (x – 2y)3 bằng
A. x3 – 3xy + 3x2y + y3
B. x3 – 6x2y + 12xy2 – 8y3
C. x3 – 6x2y + 12xy2 – 4y3
D. x3 – 3x2y + 12xy2 – 8y3
Đáp án: B
Giải thích:
Ta có (x – 2y)3
= x3 – 3.x2.2y + 3x.(2y)2 – (2y)3
= x3 – 6x2y + 12xy2 – 8y3
Bài 3: Cho a + b + c = 0.
Giá trị của biểu thức B = a3 + b3 + c3 – 3abc bằng
A. B = 0
B. B =1
C. B = 2
D. B = 3
Đáp án: A
Giải thích:
Ta có (a + b)3
= a3 + 3a2b + 3ab2 + b3
= a3 + b3 + 3ab(a + b)
=> a3 + b3 = (a + b)3 – 3ab(a + b)
Từ đó B = a3 + b3 + c3 – 3abc
= (a + b)3 – 3ab(a + b) + c3 – 3abc
= [(a+b)3 + c3] – 3ab(a + b +c)
= (a + b + c)[(a + b)2 – (a + b)c + c2] – 3ab(a + b + c)
Mà a + b + c = 0 nên
B = 0.[(a + b)2 – (a + b)c + c2] – 3ab.0
= 0
Vậy B = 0
Bài 4: Cho 2x – y = 9. Giá trị của biểu thức
A = 8x3 – 12x2y + 6xy2 – y3 + 12x2 – 12xy + 3y2 + 6x – 3y + 11 bằng
A. A = 1001
B. A = 1000
C. A = 1010
D. A = 990
Đáp án: C
Giải thích:
Ta có
A = 8x3 – 12x2y + 6xy2 – y3 + 12x2 – 12xy + 3y2 + 6x – 3y + 11
= (2x)3 – 3.(2x)2.y + 3.2x.y - y3 + 3(4x2 – 4xy + y2) + 3(2x – y) + 11
= (2x – y)3 + 3(2x – y)2 + 3(2x – y) + 1 + 10
= (2x – y + 1)3 + 10
Thay 2x – y = 9 vào A = (2x – y + 1)3 + 10
ta được A = (9 + 1)3 + 10 = 1010
Vậy A = 1010
Bài 5: Chọn câu đúng.
A. 8 + 12y + 6y2 + y3 = (8 + y3)
B. a3 + 3a2 + 3a + 1 = (a + 1)3
C. (2x – y)3 = 2x3 – 6x2y + 6xy – y3
D. (3a + 1)3 = 3a3 + 9a2 + 3a + 1
Đáp án: B
Giải thích:
Ta có 8 + 12y + 6y2 + y3
= 23 + 3.22y + 3.2.y2 + y3
= (2 + y)3 ≠ (8 + y3) nên A sai
+ Xét (2x – y)3
= (2x)3 – 3(2x)2.y + 3.2x.y2 – y3
= 8x3 – 12x2y + 6xy2 – y3 ≠ 2x3 – 6x2y + 6xy – y3 nên C sai
+ Xét (3a + 1)3
= (3a)3 + 3.(3a)2.1 + 3.3a.12 + 1
= 27a3 + 27a2 + 9a + 1
≠ 3a3 + 9a2 + 3a + 1 nên D sai
+ Xét a3 + 3a2 + 3a + 1 = (a + 1)3 nên B đúng
Bài 6: Chọn câu sai.
A. (-b – a)3 = -a3 – 3ab(a + b) – b3
B. (c – d)3 = c3 – d3 + 3cd(d – c)
C. (y – 2)3 = y3 – 8 – 6y(y + 2)
D. (y – 1)3 = y3 – 1- 3y(y – 1)
Đáp án: C
Giải thích:
Ta có
(-b – a)3 = [-(a + b)3]
= -(a + b)3
= -(a3 + 3a2b + 3ab2 + b3)
= -a3 - 3a2b - 3ab2 - b3
= -a3 – 3ab(a + b) – b3 nên A đúng
+ Xét (c – d)3
= c3 – 3c2d + 3cd2 - d3
= c3 – d3 + 3cd(d – c) nên B đúng
+ Xét (y – 1)3
= y3 – 3y2.1 + 3y.12 – 13
= y3 – 1 – 3y(y – 1) nên D đúng
+ Xét (y – 2)3
= y3 – 3y2.2 +3y.22 – 23
= y3 – 6y2 + 12y – 8
= y3 – 8 – 6y(y – 2)
≠ y3 – 8 – 6y(y + 2) nên C sai
Bài 7: Giá trị của biểu thức
P = -2(x3 + y3) + 3(x2 + y2) khi x + y = 1 là
A. P = 3
B. P = 1
C. P = 5
D. P = 0
Đáp án: B
Giải thích:
Ta có (x + y)3 = x3 + 3x2y + 3xy2 + y3
x3 + y3 = (x + y)3 – (3x2y + 3xy2)
= (x + y)3 – 3xy(x + y)
Và (x + y)2 = x2 + 2xy + y2 x2 + y2
= (x + y)2 – 2xy
Khi đó P = -2(x3 + y3) + 3(x2 + y2)
= -2[(x + y)3 – 3xy(x + y)] + 3[(x + y)2 – 2xy]
Vì x + y = 1 nên ta có
P = -2(1 – 3xy) + 3(1 – 2xy)
= -2 + 6xy + 3 – 6xy = 1
Vậy P = 1
Bài 8: Cho x thỏa mãn (x + 1)3 – x2(x + 3) = 2.
Chọn câu đúng.
A. x = -3
B.
C. x = 3
D.
Đáp án: D
Giải thích:
Bài 9: Giá trị của biểu thức
Q = a3 + b3 biết a + b = 5 và ab = -3
A. Q = 170
B. Q = 140
C. Q = 80
D. Q = -170
Đáp án: A
Giải thích:
Ta có
(a + b)3 = a3 + 3a2b + 3ab2 + b3
= a3 + b3 + 3ab(a + b)
Suy ra a3 + b3 = (a + b)3 – 3ab(a + b)
Hay Q = (a + b)3 – 3ab(a + b)
Thay a + b = 5 và a.b = -3
vào Q = (a + b)3 – 3ab(a + b) ta được
Q = 53 – 3.(-3).5 = 170
Vậy Q = 170
Bài 10: Cho biểu thức A = x3 – 3x2 + 3x.
Tính giá trị của A khi x = 1001
A. A = 10003
B. A = 1001
C. A = 10003 – 1
D. A = 10003 + 1
Đáp án: D
Giải thích:
Ta có A = x3 – 3x2 + 3x
= x3 – 3x2 + 3x – 1 + 1
= (x – 1)3 + 1
Thay x = 1001 vào A = (x – 1)3 + 1 ta được
A = (1001 – 1)3 + 1
suy ra A = 10003 + 1
Xem thêm các bài tổng hợp lý thuyết Toán lớp 8 đầy đủ, chi tiết khác:
Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp theo)
Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung
Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức
Lý thuyết Phân tích đa thức thành nhân tử bằng phương pháp nhóm các hạng tử
Lý thuyết Phân tích đa thức thành nhân tử bằng các phối hợp nhiều phương pháp
Xem thêm các chương trình khác:
- Tóm tắt tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 8 (hay nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Soạn văn 8 (ngắn nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Văn mẫu lớp 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Hóa học 8
- Giải sbt Hóa học 8
- Giải vở bài tập Hóa học 8
- Lý thuyết Hóa học 8
- Các dạng bài tập Hóa học lớp 8
- Giải sgk Vật Lí 8
- Giải sbt Vật Lí 8
- Lý thuyết Vật Lí 8
- Giải vở bài tập Vật lí 8
- Giải sgk Tiếng Anh 8 (sách mới) | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2
- Giải sgk Tiếng Anh 8 | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 8 (sách mới) | Sách bài tập Tiếng Anh 8
- Giải sbt Tiếng Anh 8 (thí điểm)
- Giải sgk Tin học 8 | Giải bài tập Tin học 8 Học kì 1, Học kì 2 (sách mới)
- Giải sgk Lịch Sử 8 | Giải bài tập Lịch sử 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch sử 8 (sách mới) | Kiến thức trọng tâm Lịch sử 8
- Giải vở bài tập Lịch sử 8
- Giải Tập bản đồ Lịch sử 8
- Đề thi Lịch Sử 8
- Giải vở bài tập Sinh học 8
- Giải sgk Sinh học 8
- Lý thuyết Sinh học 8
- Giải sgk Giáo dục công dân 8 | Giải bài tập Giáo dục công dân 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Giáo dục công dân 8 (sách mới) | Kiến thức trọng tâm GDCD 8
- Lý thuyết Địa Lí 8 (sách mới) | Kiến thức trọng tâm Địa Lí 8
- Giải sgk Địa Lí 8 | Giải bài tập Địa Lí 8 Học kì 1, Học kì 2 (sách mới)
- Giải Tập bản đồ Địa Lí 8
- Đề thi Địa lí 8