Chuyên đề Phương trình chứa dấu giá trị tuyệt đối (2022) - Toán 8
Với Chuyên đề Phương trình chứa dấu giá trị tuyệt đối (2022) - Toán 8 mới nhất được biên soạn bám sát chương trình Toán 8 giúp các bạn học tốt môn Toán hơn.
Chuyên đề Phương trình chứa dấu giá trị tuyệt đối - Toán 8
A. Lý thuyết
1. Nhắc lại về giá trị tuyệt đối
Giá trị tuyệt đối của số a, được kí hiệu là | a |, ta định nghĩa như sau:
Ví dụ: Bỏ dấu giá trị tuyệt đối và rút gọn biểu thức sau:
a) A = | x - 1 | + 3 - x khi x ≥ 1.
b) B = 3x - 1 + | - 2x | khi x < 0.
Hướng dẫn:
a) Khi x ≥ 1 ta có x - 1 ≥ 0 nên | x - 1 | = x - 1
Do đó A = | x - 1 | + 3 - x = x - 1 + 3 - x = 2.
b) Khi x < 0 ta có - 2x > 0 nên | - 2x | = - 2x
Do đó B = 3x - 1 + | - 2x | = 3x - 1 - 2x = x - 1.
2. Giải một số phương trình chứa dấu giá trị tuyệt đối
a) Phương pháp chung
Bước 1: Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối
Bước 2: Giải các bất phương trình không có dấu giá trị tuyệt đối
Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét
Bước 4: Kết luận nghiệm
b) Một số dạng cơ bản
Dạng | A | = | B | ⇔ A = B hay A = - B.
Dạng phương trình có chứa nhiều dấu giá trị tuyệt đối
+ Xét dấu các biểu thức chứa ẩn nằm trong dấu GTTĐ.
+ Chia trục số thành nhiều khoảng sao cho trong mỗi khoảng, các biểu thức nói trên có dấu xác định.
+ Xét từng khoảng, khử các dấu GTTĐ, rồi giải PT tương ứng trong trường hợp đó.
+ Kết hợp các trường hợp đã xét, suy ra số nghiệm của PT đã cho.
Ví dụ: Giải bất phương trình | 4x | = 3x + 1
Hướng dẫn:
Ta có | 4x | = 3x + 1
+ Với x ≥ 0 ta có | 4x | = 4x
Khi đó phương trình trở thành 4x = 3x + 1
⇔ 4x - 3x = 1 ⇔ x = 1.
Giá trị x = 1 thỏa mãn điều kiện x ≥ 0, nên 1 là một nghiệm của phương trình đã cho
+ Với x < 0 ta có | 4x | = - 4x
Khi đó phương trình trở thành - 4x = 3x + 1
⇔ - 4x - 3x = 1 ⇔ - 4x = 1 ⇔ x = - 1/7.
Giá trị x = - thỏa mãn điều kiện x < 0, nên - là một nghiệm cần tìm.
Vậy phương trình đã cho có tập nghiệm là S = { - ;1 }
B. Trắc nghiệm & Tự luận
I. Bài tập trắc nghiệm
Bài 1: Biểu thức A = | 4x | + 2x - 1 với x < 0, rút gọn được kết quả là?
A. A = 6x - 1
B. A = 1 - 2x
C. A = - 1 - 2x
D. A = 1 - 6x
Ta có: x < 0 ⇒ | 4x | = - 4x
Khi đó ta có: A = | 4x | + 2x - 1 = - 4x + 2x - 1 = - 2x - 1
Chọn đáp án C.
Bài 2: Tập nghiệm của phương trình: | 3x + 1 | = 5
A. S = {- 2}
B. S = {4/3}
C. S = {- 2;4/3}
D. S = {Ø}
Ta có: | 3x + 1 | = 5
⇔
Vậy tập nghiệm của phương trình đã cho là S = {- 2;4/3}
Chọn đáp án C.
Bài 3: Tập nghiệm của phương trình | 2 - 3x | = | 2 - 5x | là?
A. S = {- 3;1}
B. S = {- 3;7/5}
C. S = {0;7/5}
D. S = { - 3;1 }
Ta có: | 2 - 3x | = | 2 - 5x |
⇔
Vậy tập nghiệm của phương trình là S = {- 3;7/5}
Chọn đáp án B.
Bài 4: Giá trị m để phương trình | 3 + x | = m có nghiệm x = - 1 là?
A. m = 2
B. m = - 2
C. m = 1
D. m = - 1
Phương trình đã cho có nghiệm x = - 1 nên ta có: |3 + (- 1)| = m ⇔ m = 2.
Vậy m = - 2 là giá trị cần tìm.
Chọn đáp án B.
Bài 5: Giá trị của m để phương trình | x - m | = 2 có nghiệm là x = 1?
A. m ∈ {1}
B. m ∈ {- 1;3}
C. m ∈ {- 1;0}
D. m ∈ {1;2}
Phương trình có nghiệm x = 1, khi đó ta có:| 1 - m | = 2
⇔
Vậy giá trị m cần tìm là m ∈ { - 1;3 }
Chọn đáp án B.
II. Bài tập tự luận
Bài 1: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:
a) A = 3x + 2 + | 5x | với x > 0.
b) A = | 4x | - 2x + 12 với x < 0.
c) A = | x - 4 | - x + 1 với x < 4
Hướng dẫn:
a) Với x > 0 ⇒ | 5x | = 5x
Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2
Vậy A = 8x + 2.
b) Ta có: x < 0 ⇒ | 4x | = - 4x
Khi đó ta có: A = | 4x | - 2x + 12 = - 4x - 2x + 12 = 12 - 6x
Vậy A = 12 - 6x.
c) Ta có: x < 4 ⇒ | x - 4 | = 4 - x
Khi đó ta có: A = | x - 4 | - x + 1 = 4 - x - x + 1 = 5 - 2x.
Vậy A = 5 - 2x
Bài 2: Giải các phương trình sau:
a) | 2x | = x - 6
b) | - 5x | - 16 = 3x
c) | 4x | = 2x + 12
d) | x + 3 | = 3x - 1
Hướng dẫn:
a) Ta có: | 2x | = x - 6
+ Với x ≥ 0, phương trình tương đương: 2x = x - 6 ⇔ x = - 6.
Không thỏa mãn điều kiện x ≥ 0.
+ Với x < 0, phương trình tương đương: - 2x = x - 6 ⇔ - 3x = - 6 ⇔ x = 2.
Không thỏa mãn điều kiện x < 0.
Vậy phương trình đã cho vô nghiệm.
b) Ta có: | - 5x | - 16 = 3x
+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8
Thỏa mãn điều kiện x ≥ 0
+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2
Thỏa mãn điều kiện x < 0
Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }
c) Ta có: | 4x | = 2x + 12
+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6
Thỏa mãn điều kiện x ≥ 0
+ Với x < 0, phương trình tương đương: - 4x = 2x + 12 ⇔ - 6x = 12 ⇔ x = - 2
Thỏa mãn điều kiện x < 0
Vậy phương trình đã cho có tập nghiệm là S = {- 2;6}
d) Ta có: | x + 3 | = 3x - 1
+ Với x ≥ - 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ - 2x = - 2 ⇔ x = 1.
Thỏa mãn điều kiện x ≥ - 3
+ Với x < - 3, phương trình tương đương: - x - 3 = 3x + 1 ⇔ - 4x = 4 ⇔ x = - 1
Không thỏa mã điều kiện x < - 3
Vậy phương trình đã cho có tập nghiệm là S = {1}
Xem thêm các bài Chuyên đề Toán lớp 8 hay, chi tiết khác:
Chuyên đề Liên hệ giữa thứ tự và phép cộng
Chuyên đề Liên hệ giữa thứ tự và phép nhân
Xem thêm các chương trình khác:
- Tóm tắt tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 8 (hay nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Soạn văn 8 (ngắn nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Văn mẫu lớp 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Hóa học 8
- Giải sbt Hóa học 8
- Giải vở bài tập Hóa học 8
- Lý thuyết Hóa học 8
- Các dạng bài tập Hóa học lớp 8
- Giải sgk Vật Lí 8
- Giải sbt Vật Lí 8
- Lý thuyết Vật Lí 8
- Giải vở bài tập Vật lí 8
- Giải sgk Tiếng Anh 8 (sách mới) | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2
- Giải sgk Tiếng Anh 8 | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 8 (sách mới) | Sách bài tập Tiếng Anh 8
- Giải sbt Tiếng Anh 8 (thí điểm)
- Giải sgk Tin học 8 | Giải bài tập Tin học 8 Học kì 1, Học kì 2 (sách mới)
- Giải sgk Lịch Sử 8 | Giải bài tập Lịch sử 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch sử 8 (sách mới) | Kiến thức trọng tâm Lịch sử 8
- Giải vở bài tập Lịch sử 8
- Giải Tập bản đồ Lịch sử 8
- Đề thi Lịch Sử 8
- Giải vở bài tập Sinh học 8
- Giải sgk Sinh học 8
- Lý thuyết Sinh học 8
- Giải sgk Giáo dục công dân 8 | Giải bài tập Giáo dục công dân 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Giáo dục công dân 8 (sách mới) | Kiến thức trọng tâm GDCD 8
- Lý thuyết Địa Lí 8 (sách mới) | Kiến thức trọng tâm Địa Lí 8
- Giải sgk Địa Lí 8 | Giải bài tập Địa Lí 8 Học kì 1, Học kì 2 (sách mới)
- Giải Tập bản đồ Địa Lí 8
- Đề thi Địa lí 8