Chuyên đề Các trường hợp đồng dạng của tam giác vuông (2022) - Toán 8

Với Chuyên đề Các trường hợp đồng dạng của tam giác vuông (2022) - Toán 8 mới nhất được biên soạn bám sát chương trình Toán 8 giúp các bạn học tốt môn Toán hơn.

1 1,705 18/08/2022


Chuyên đề Các trường hợp đồng dạng của tam giác vuông - Toán 8

A. Lý thuyết 

1. Áp dụng các trường hợp đồng dạng của tam giác vào tam giác vuông

Hai tam giác vuông đồng dạng với nhau nếu:

+ Tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia.

+ Tam giác vuông này có hai cạnh góc vuông tỉ lệ với hai cạnh góc vuông của tam giác vuông kia.

2. Dấu hiệu đặc biệt nhận biết hai tam vuông đồng dạng

Định lý 1: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Tổng quát: Δ ABC,Δ A'B'C', Aˆ = A'ˆ = 900; B'C'/BC = A'B'/AB

\Rightarrow Δ ABC ∈ Δ A'B'C'.

3. Tỉ số hai đường cao, tỉ số diện tích của hai tam giác đồng dạng

Định lý 2: Tỉ số hai đường cao tương ứng của hai tam giác đồng dạng bằng tỉ số đồng dạng.

Lý thuyết: Các trường hợp đồng dạng của tam giác vuông

Định lý 3: Tỉ số diện tích hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng.

Lý thuyết: Các trường hợp đồng dạng của tam giác vuông

4. Mở rộng

Nếu hai tam giác đồng dạng với nhau thì:

+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

+ Tỉ số các chu vi bằng tỉ số đồng dạng.

+ Tỉ số các diện tích bằng bình phương tỉ số đồng dạng.

Ví dụ: Cho tam giác đồng dạng với tam giác ABC theo tỉ số k = 4/3. Tính chu vi của tam giác ABC, biết chu vi của tam giác A'B'C' bằng 27cm.

Hướng dẫn:

Ta có Δ ABC ∈ Δ A'B'C'

Lý thuyết: Các trường hợp đồng dạng của tam giác vuông

B. Trắc nghiệm & Tự luận 

I. Bài tập trắc nghiệm

Bài 1: Cho tam giác vuông ABC vuông tại A, chân đường cao AH của tam giác ABC chia cạnh huyền BC thành hai đoạn thẳng BH = 4cm, HC = 9cm. Tính diện tích tam giác ABC?

A. SABC = 39cm2 

B. SABC = 36cm

C. SABC = 78cm2 

D. SABC = 18cm2

Áp dụng hệ thức lượng trong tam giác ABC vuông tại ATa có

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Vậy SABC = 1/2AB.AC = 1/2.2√(13) .3√(13) = 39( cm2 )

Chọn đáp án A.

Bài 2: Cho Δ ABC và Δ MNP có A^ˆ = M^ˆ = 900, AB/MN = BC/NP thì?

A. Δ ABC ∼ Δ PMN

B. Δ ABC ∼ Δ NMP

C. Δ ABC ∼ Δ MNP

D. Δ ABC ∼ Δ MPN

Ta có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông

⇒ Δ ABC ∼ Δ MNP (c - g - c)

Chọn đáp án D.

Bài 3: Nếu hai tam giác đồng dạng với nhau thì: Chọn phát biểu sai trong các phát biểu sau?

A. Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

B. Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

C. Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

D. Tỉ số các chu vi bằng 2 lần tỉ số đồng dạng.

Áp dụng tính chất mở rộng

Nếu hai tam giác đồng dạng với nhau thì:

+ Tỉ số hai đường cao tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường phân giác tương ứng bằng tỉ số đồng dạng.

+ Tỉ số hai đường trung tuyến tương ứng bằng tỉ số đồng dạng.

+ Tỉ số các chu vi bằng tỉ số đồng dạng.Đáp án D sai.

Chọn đáp án D.

Bài 4: Cho hai tam giác ABC và DEF có Aˆ = Dˆ = 900 ,AB = 3cm, BC = 5cm,EF = 10cm, DF = 6cm. Chọn phát biểu đúng trong các phát biểu sau?

A. Δ ABC ∼ Δ DEF 

B. Δ ABC ∼ Δ EDF

C. Δ ABC ∼ Δ DFE 

D. Δ ABC ∼ Δ FDE

Ta có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông

⇒ Δ ABC ∼ Δ DFE ( c - g - c )

Chọn đáp án C.

II. Bài tập tự luận

Bài 1: Cho hình bên là tam giác ABC vuông tại A, đường cao AH

a) Trong hình bên có bao nhiêu cặp tam giác đồng dạng với nhau. Hãy chỉ ra các cặp đồng dạng và theo các đỉnh tương ứng.

b) Cho biết AB = 5cm, AC = 12cm. Tinh độ dài các đoạn thẳng BC, AH, BH và CH.

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Hướng dẫn:

a) Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.

b) Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A ta có:

BC2 = CA2 + AB2 ⇒ BC2 = 122 + 52 = 132 ⇔ BC = 13 cm

Vì SABC = 1/2AB.AC = 1/2AH.BC ⇒ AH.BC = AB.AC

Hay 12.5 = AH.13 ⇒ AH = 60/13 cm

Từ câu a ta có: Δ BHA ∼ Δ BAC ⇒ BH/BA = BA/BC hay BH/5 = 5/13 ⇔ BH = 25/13 cm

Do đó: CH = BC - BH = 13 - 25/13 = 144/13 cm

Bài 2: Chân đường cao AH chia cạnh huyền BC thành hai đoạn thẳng có độ dài lần lượt là 25 cm và 36 cm. Tính chu vi và diện tích của tam giác đó.

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Hướng dẫn:

Ta có: Δ AHB ∼ Δ CHA ⇒ AH/HC = HB/HA

Hay HA/36 = 25/HA ⇔ HA2 = 302 ⇒ HA = 30 cm

Ta có: SABC = 1/2AH.BC = 1/2.30.61 = 915 cm2

Áp dụng định lý Py – ta –go ta được:

Bài tập: Các trường hợp đồng dạng của tam giác vuông

Xem thêm các bài Chuyên đề Toán lớp 8 hay, chi tiết khác:

Chuyên đề Tính chất đường phân giác của tam giác

Chuyên đề Khái niệm hai tam giác đồng dạng

Chuyên đề Trường hợp đồng dạng thứ nhất

Chuyên đề Trường hợp đồng dạng thứ hai

Chuyên đề Trường hợp đồng dạng thứ ba

1 1,705 18/08/2022


Xem thêm các chương trình khác: