Chuyên đề Phương trình tích (2022) - Toán 8

Với Chuyên đề Phương trình tích (2022) - Toán 8 mới nhất được biên soạn bám sát chương trình Toán 8 giúp các bạn học tốt môn Toán hơn.

1 952 18/08/2022


Chuyên đề Phương trình tích - Toán 8

A. Lý thuyết

1. Phương trình tích và cách giải

Phương trình tích có dạng A(x).B(x) = 0

Cách giải phương trình tích A(x).B(x) = 0 ⇔ Lý thuyết: Phương trình tích

Cách bước giải phương trình tích

Bước 1: Đưa phương trình đã cho về dạng tổng quát A(x).B(x) = 0 bằng cách:

Chuyển tất cả các hạng tử của phương trình về vế trái. Khi đó vế phải bằng 0.

Phân tích đa thức ở vế phải thành nhân tử

Bước 2: Giải phương trình và kết luận

2. Ví dụ minh họa

Ví dụ 1: Giải phương trình (x + 1)(x + 4) = (2 - x)(2 + x)

Hướng dẫn:

Ta có: (x + 1)(x + 4) = (2 - x )( 2 + x ) ⇔ x2 + 5x + 4 = 4 - x2

⇔ 2x2 + 5x = 0 ⇔ x(2x + 5) = 0

Lý thuyết: Phương trình tích

Vậy phương trình đã cho có tập nghiệm là S = {- 5/2; 0}

Ví dụ 2: Giải phương trình x3 - x2 = 1 - x

Hướng dẫn:

Ta có: x3 - x2 = 1 - x ⇔ x2(x - 1) = - (x - 1)

⇔ x2(x - 1) + (x - 1) = 0 ⇔ (x - 1)(x2 + 1) = 0

Lý thuyết: Phương trình tích

( 1 ) ⇔ x - 1 = 0 ⇔ x = 1.

( 2 ) ⇔ x2 + 1 = 0 (Vô nghiệm vì x2 ≥ 0 ⇒ x2 + 1 ≥ 1)

Vậy phương trình đã cho có tập nghiệm là S = {1}.

B. Trắc nghiệm & Tự luận

I Bài tập trắc nghiệm

Bài 1: Nghiệm của phương trình (x + 2)(x - 3) = 0 là?

A. x = - 2.

B. x = 3.

C. x = - 2; x = 3 .

D. x = 2.

Ta có: (x + 2)(x - 3) = 0

⇔ Bài tập: Phương trình tích

Vậy nghiệm của phương trình là x = - 2; x = 3.

Chọn đáp án C.

Bài 2: Tập nghiệm của phương trình (2x + 1)(2 - 3x) = 0 là?

A. S = {- 1/2}.

B. S = {- 1/2; 3/2}

C. S = {- 1/2; 2/3}.

D. S = {3/2}.

Ta có: (2x + 1)(2 - 3x) = 0

 Bài tập: Phương trình tích

Vậy tập nghiệm của phương trình S = {- 12; 23}.

Chọn đáp án C.

Bài 3: Nghiệm của phương trình 2x(x + 1) = x2 - 1 là?

A. x = - 1.

B. x = ± 1.

C. x = 1.

D. x = 0.

Ta có: 2x(x + 1) = x2 - 1

⇔ 2x(x + 1) = (x + 1)(x - 1)

⇔ (x + 1)(2x - x + 1) = 0

⇔ (x + 1)(x + 1) = 0

⇔ (x + 1)2 = 0

⇔ x + 1 = 0

⇔ x = - 1.

Vậy phương trình có nghiệm là x = - 1.Chọn đáp án A.

Bài 4: Giá trị của m để phương trình (x + 2)(x - m) = 4 có nghiệm x = 2 là?

A. m = 1.

B. m = ± 1.

C. m = 0.

D. m = 2.

Phương trình (x + 2)(x - m) = 4 có nghiệm x = 2, thay x = 2 vào phương trình đã cho

Khi đó ta có: (2 + 2)(2 - m) = 4 ⇔ 4(2 - m) = 4⇔ 2 - m = 1 ⇔ m = 1.

Vậy m = 1 là giá trị cần tìm.Chọn đáp án A.

Bài 5: Giá trị của m để phương trình x3 - x2 = x + m có nghiệm x = 0 là?

A. m = 1.

B. m = - 1.

C. m = 0.

D. m = ± 1.

Thay x = 0 vào phương trình x3 - x2 = x + m.

Khi đó ta có: 03 - 02 = 0 + m ⇔ m = 0.Vậy m = 0 là giá trị cần tìm.

Chọn đáp án C.

Câu 6: Phương trình (x – 1)(x – 2)(x – 3) = 0 có số nghiệm là:

A. 1

B. 2

C. 3

D. 4

Câu 7: Chọn khẳng định đúng.

A. Phương trình 8x(3x – 5) = 6(3x – 5) có hai nghiệm trái dấu

B. Phương trình 8x(3x – 5) = 6(3x – 5) có hai nghiệm dương

C. Phương trình 8x(3x – 5) = 6(3x – 5) có hai nghiệm cùng âm

D. Phương trình 8x(3x – 5) = 6(3x – 5) có một nghiệm duy nhất

Câu 8: Số nghiệm của phương trình: (x2 + 9) (x – 1) = (x2 + 9) (x + 3) là

A. 2

B. 1

C. 0

D. 3

Câu 9: Phương trình: (4 + 2x)(x – 1) = 0 có nghiệm là:

A. x = 1; x = 2

B. x = -2; x = 1

C. x = -1; x = 2

D. x = 1; x = 2

Câu 10: Phương trình (x2 – 1) (x – 2) (x – 3) = 0 có số nghiệm là:

A. 1

B. 2

C. 3

D. 4

Câu 11: Tích các nghiệm của phương trình x3 – 3 x2 – x + 3 = 0 là

A. -3

B. 3

C. -6

D. 6

Câu 12: Cho phương trình 5 – 6(2x – 3) = x(3 – 2x) + 5. Chọn khẳng định đúng.

A. Phương trình có hai nghiệm trái dấu

B. Phương trình có hai nghiệm nguyên

C. Phương trình có hai nghiệm cùng dương

D. Phương trình có một nghiệm duy nhất

Câu 13: Tập nghiệm của phương trình (x2 + x) (x2 + x + 1) = 6 là

A. S = {-1; -2}

B. S = {1; 2}

C. S = {1; -2}

D. S = {-1; 2}

Câu 14: Biết rằng phương trình (4 x2 – 1)2 = 8 x + 1 có nghiệm lớn nhất là x0. Chọn khẳng định đúng

A. x0 = 3

B. x0 < 2

C. x0 > 1

D. x0 < 0

Câu 15: Cho phương trình x4 – 8 x2 + 16 = 0. Chọn khẳng định đúng

A. Phương trình có hai nghiệm đối nhau

B. Phương trình vô nghiệm

C. Phương trình có một nghiệm duy nhất

D. Phương trình có 4 nghiệm phân biệt

II. Bài tập tự luận

Bài 1: Giải các phương trình sau:

a) (5x - 4)(4x + 6) = 0

b) (x - 5)(3 - 2x)(3x + 4) = 0

c) (2x + 1)(x2 + 2) = 0

d) (x - 2)(3x + 5) = (2x - 4)(x + 1)

Hướng dẫn:

a) Ta có: (5x - 4)(4x + 6) = 0

Bài tập: Phương trình tích

Vậy phương trình đã cho có tập nghiệm là S = {- 3/2; 4/5}.

b) Ta có: (x - 5)(3 - 2x)(3x + 4) = 0

Bài tập: Phương trình tích

Vậy phương trình đã cho có tập nghiệm là S = {- 4/3; 3/2; 5}.

c) Ta có: (2x + 1)(x2 + 2) = 0

Bài tập: Phương trình tích

Giải (1) ⇔ 2x + 1 = 0 ⇔ 2x = - 1 ⇔ x = - 1/2.

Ta có: x2 ≥ 0 ⇒ x2 + 2 ≥ 2 ∀ x ∈ R

⇒ Phương trình (2) vô nghiệm.

Vậy phương trình đã cho có tập nghiệm S = {- 1/2}.

d) Ta có: (x - 2)(3x + 5) = (2x - 4 )( x + 1)

⇔ (x - 2)(3x + 5) - 2(x - 2)(x + 1) = 0

⇔ (x - 2)[(3x + 5) - 2(x + 1)] = 0

⇔ (x - 2)(x + 3) = 0

Bài tập: Phương trình tích

Vậy phương trình đã cho có tập nghiệm là S = {- 3; 2}.

Bài 2: Giải các phương trình sau:

a) (2x + 7)2 = 9(x + 2 )2

b) (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)

c) (5x2 - 2x + 10)2 = (x2 + 10x - 8)2

d) (x2 + x)2 + 4(x2 + x) - 12 = 0

Hướng dẫn:

a) Ta có: (2x + 7)2 = 9(x + 2)2

⇔ (2x + 7)2 - 9(x + 2)2 = 0

⇔ [(2x + 7) + 3(x + 2)][(2x + 7) - 3(x + 2)] = 0

⇔ (5x + 13)(1 - x) = 0

Bài tập: Phương trình tích

Vậy phương trình đã cho có tập nghiệm là S = {- 13/5; 1}.

b) Ta có: (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)

⇔ (x2 - 1)(x + 2)( x - 3) - (x - 1)(x2 - 4 )(x + 5) = 0

⇔ (x - 1)(x + 1)(x + 2)(x - 3) - (x - 1)(x - 2)(x + 2)(x + 5) = 0

⇔ (x - 1)(x + 2)[(x + 1)(x - 3) - (x - 2)(x + 5)] = 0

⇔ (x - 1)(x + 2)[(x2 - 2x - 3) - (x2 + 3x - 10)] = 0

⇔ (x - 1)(x + 2)(7 - 5x) = 0

Bài tập: Phương trình tích

Vậy phương trình có tập nghiệm là S = { - 2; 1; 7/5 }.

c) Ta có: (5x2 - 2x + 10)2 = (3x2 + 10x - 8)2

⇔ (5x2 - 2x + 10)2 - (3x2 + 10x - 8)2 = 0

⇔ [(5x2 - 2x + 10) - (3x2 + 10x - 8)][(5x2 - 2x + 10) + (3x2 + 10x - 8)] = 0

⇔ (2x2 - 12x + 18)(8x2 + 8x + 2) = 0

⇔ 4(x2 - 6x + 9)(4x2 + 4x + 1) = 0

⇔ 4(x - 3)2(2x + 1)2 = 0

Bài tập: Phương trình tích

Vậy phương trình đã cho có tập nghiệm S = {- 1/2; 3}.

d) Ta có: (x2 + x)2 + 4(x2 + x) - 12 = 0

Đặt t = x2 + x, khi đó phương trình trở thành:

t2 + 4t - 12 = 0 ⇔ (t + 6)(t - 2) = 0

Bài tập: Phương trình tích

+ Với t = - 6, ta có: x2 + x = - 6 ⇔ x2 + x + 6 = 0 ⇔ (x + 1/2)2 + 23/4 = 0

Mà (x + 1/2)2 + 23/4 ≥ 23/4 ∀ x ∈ R ⇒ Phương trình đó vô nghiệm.

+ Với t = 2, ta có x2 + x = 2 ⇔ x2 + x - 2 = 0

⇔ (x + 2)(x - 1) = 0 ⇔ Bài tập: Phương trình tích

Vậy phương trình có tập nghiệm là S = {- 2;1}.

Xem thêm các bài Chuyên đề Toán lớp 8 hay, chi tiết khác:

Chuyên đề Mở đầu về phương trình

Chuyên đề Phương trình bậc nhất một ẩn và cách giải

Chuyên đề Phương trình đưa được về dạng ax + b = 0

Chuyên đề Phương trình chứa ẩn ở mẫu

Chuyên đề Giải bài toán bằng cách lập phương trình

1 952 18/08/2022


Xem thêm các chương trình khác: