Chuyên đề Hình lăng trụ đứng (2022) - Toán 8
Với Chuyên đề Hình lăng trụ đứng (2022) - Toán 8 mới nhất được biên soạn bám sát chương trình Toán 8 giúp các bạn học tốt môn Toán hơn.
Chuyên đề Hình lăng trụ đứng - Toán 8
A. Lý thuyết
1. Hình lăng trụ đứng
Hình vẽ dưới đây gọi là lăng trụ đứng.
Trong hình lăng trụ đứng này:
+ A, B, C, D, A', B', C', D' là các đỉnh.
+ ABB'A', BCC'B',... là những hình chữ nhật, gọi là các mặt bên
+ AA'; BB'; CC'; DD' song song với nhau và bằng nhau, chúng được gọi là các cạnh bên
+ Hai mặt ABCD và A'B'C'D' là hai đáy. Hình lăng trụ trên có hai đáy là tứ giác nên gọi là lặng trụ tứ giác, kí hiệu : ABCD.A'B'C'D'
Chú ý:
– Hai đáy là hai đa giác bằng nhau và nằm trên hai mặt phẳng song song.
– Các cạnh bên song song, bằng nhau và vuông góc với hai mặt phẳng đáy. Độ dài cạnh bên được gọi chiều cao của hình lăng trụ đứng.
– Các mặt bên là những hình chữ nhật và vuông góc với hai mặt phẳng đáy.
– Hình hộp chữ nhật, hình lập phương là những hình lăng trụ đứng.
– Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng.
Ví dụ: Cho hình lưng trụ đứng sau:
Hai mặt đáy ABC và A'B'C' là hai tam giác bằng nhau (nằm trong hai mặt phẳng song song)
Các mặt bên A'C'CA, A'B'BA, B'C'CB là các hình chữ nhật.
2. Diện tích – Thể tích của hình lăng trụ đứng
a) Công thức diện tích xung quanh
Diện tích xung quanh của hình lăng trụ đứng bằng chu vi đáy nhân với chiều cao:
Sxq = 2p.h (p: nửa chu vi đáy, h: chiều cao)
b) Diện tích toàn phần
Diện tích toàn phần của hình lăng trụ đứng bằng tổng diện tích xung quanh và diện tích hai đáy.
Stp = Sxq + 2S (S: điện tích đáy)
c) Thể tích
Thể tích của hình lăng trụ đứng bằng diện tích đáy nhân với chiều cao:
V = S.h (S: diện tích đáy, h: chiều cao)
d) Ví dụ
Ví dụ: Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác đều, AB = 4cm,AA' = 5cm. Tính diện tích xung quanh, diện tích toàn phần và thể tích của hình lặng trụ ABC.A'B'C' ?
Hướng dẫn:
Xét tam giác ABC có nửa chu vi của tam giác là:
+ Diện tích xung quanh của hình lăng trụ Sxq = 2p.AA' = 2.6.5 = 60cm2
+ Diện tích toàn phần của hình lăng trụ là Stp = Sxq + 2SABC = 60 + 2.4√ 3 = 60 + 8√ 3 cm2
+ Thể tích của hình lăng trụ là V = S.AA' = 4√ 3 .5 = 20√ 3cm3
B. Trắc nghiệm & Tự luận
I. Bài tập trắc nghiệm
Bài 1: Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông tại A có AB = 3cm, AC = 4cm. Hình lăng trụ có chiều cao h = 3cm. Thể tích của hình lăng trụ đó là?
A. V = 9cm3
B. V = 18cm3
C. V = 24cm3
D. V = 36cm3
Ta có: SABC = 1/2AB.AC = 1/2.3.4 = 6cm2
Khi đó: V = h.SABC = 3.6 = 18cm3
Chọn đáp án B.
Bài 2: Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật, AB = 4cm BC = 5cm, chiều cao h = 2,5cm. Diện tích xung quanh của hình lăng trụ đứng là?
A. Sxq = 22,5cm2
B. Sxq = 45cm2
C. Sxq = 30cm2
D. Sxq = 36cm2
Ta có chu vi của đáy là: p = 2(AB + BC) = 2(4 + 5) = 18cm
Khi đó: Sxq = p.h = 18.2,5 = 45 cm2
Chọn đáp án B.
Bài 3: Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình chữ nhật, AB = 4cm BC = 5cm, chiều cao h = 2,5cm. Diện tích toàn phần của hình lăng trụ đứng là?
A. Stp = 62,5cm2
B. Sxq = 85cm2
C. Stp = 70cm2
D. Sxq = 76cm2
Theo câu 2, ta có: Sxq = 45cm2
Khi đó ta có: Stp = Sxq + 2S = 45 + 2.4.5 = 85cm2
Chọn đáp án B.
Bài 4: Chọn phát biểu đúng trong các phát biểu sau:
A. Hình lăng trụ tam giác có 4 mặt, 6 đỉnh.
B. Hình lăng trụ tam giác có 5 mặt, 6 đỉnh.
C. Hình lăng trụ tam giác có 4 mặt, 5 đỉnh
D. Hình lăng trụ tam giác có 4 mặt, 4 đỉnh.
Hình lăng trụ tam giác gồm 5 mặt và 6 đỉnh.
+ 5 mặt:(A'B'C'), (BCC'B'), (ABC), (A'C'CA), (ABB'A')
+ 6 đỉnh là: A,B,C,A',B',C'
Chọn đáp án B.
II. Bài tập tự luận
Bài 1: Tính chiều cao của hình lăng trụ đứng ABCD.EFGH, biết rằng đáy ABCD là hình thoi có các đường chéo AC = 10cm,BD = 24cm và diện tích toàn phân bằng 1280cm2
Hướng dẫn:
Áp dụng công thức: Stp = Sxq + 2Sd
Hay Sxq = Stp - 2Sd = 1280 - 2.1/2.1024
= 1280 - 240 = 1040cm2
Vì đáy ABCD là hình thoi nên AC vuông góc với BD tại O (tính chất về đường chéo của hình thoi)
Áp dụng định lý Py – ta – go vào tam giác BOC vuông tại O ta được:
BC2 = BO2 + OC2 ⇒ BC2 = 122 + 52 = 132 ⇔ BC = 13cm
Chu vi đáy là 2p = 4.13 = 52cm
Áp dụng công thức Sxq = 2p.h
Bài 2: Một trại hè có dạng hình lăng trụ đứng đáy tam giác, thể tích hình không gian bên trong là 2,16cm3. Biết chiều dài lều AD = 2,4cm, chiều rộng của lều là 1,2cm. Tính chiều cao AH của lều?
Hướng dẫn:
Áp dụng công thức thể tích của hình lăng trụ đứng ta có: V = S.h
Ta có:
Do đó: V = S.h = 0,6AH.2,4 = 1,44AH
Theo giả thiết ta có: 1,44AH = 2,16 ⇔ AH = 1,5cm
Xem thêm các bài Chuyên đề Toán lớp 8 hay, chi tiết khác:
Chuyên đề Thể tích của hình hộp chữ nhật
Chuyên đề Diện tích xung quanh của hình lăng trụ đứng
Xem thêm các chương trình khác:
- Tóm tắt tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 8 (hay nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Soạn văn 8 (ngắn nhất) | Để học tốt Ngữ văn lớp 8 (sách mới)
- Văn mẫu lớp 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 8 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Hóa học 8
- Giải sbt Hóa học 8
- Giải vở bài tập Hóa học 8
- Lý thuyết Hóa học 8
- Các dạng bài tập Hóa học lớp 8
- Giải sgk Vật Lí 8
- Giải sbt Vật Lí 8
- Lý thuyết Vật Lí 8
- Giải vở bài tập Vật lí 8
- Giải sgk Tiếng Anh 8 (sách mới) | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2
- Giải sgk Tiếng Anh 8 | Giải bài tập Tiếng Anh 8 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 8 (sách mới) | Sách bài tập Tiếng Anh 8
- Giải sbt Tiếng Anh 8 (thí điểm)
- Giải sgk Tin học 8 | Giải bài tập Tin học 8 Học kì 1, Học kì 2 (sách mới)
- Giải sgk Lịch Sử 8 | Giải bài tập Lịch sử 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch sử 8 (sách mới) | Kiến thức trọng tâm Lịch sử 8
- Giải vở bài tập Lịch sử 8
- Giải Tập bản đồ Lịch sử 8
- Đề thi Lịch Sử 8
- Giải vở bài tập Sinh học 8
- Giải sgk Sinh học 8
- Lý thuyết Sinh học 8
- Giải sgk Giáo dục công dân 8 | Giải bài tập Giáo dục công dân 8 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Giáo dục công dân 8 (sách mới) | Kiến thức trọng tâm GDCD 8
- Lý thuyết Địa Lí 8 (sách mới) | Kiến thức trọng tâm Địa Lí 8
- Giải sgk Địa Lí 8 | Giải bài tập Địa Lí 8 Học kì 1, Học kì 2 (sách mới)
- Giải Tập bản đồ Địa Lí 8
- Đề thi Địa lí 8