Công thức tính thể tích khối lăng trụ và cách giải các dạng bài tập (2024) chi tiết nhất
Với Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất Toán lớp 12 Hình học chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất
1. Lý thuyết về khối lăng trụ
a. Định nghĩa: Một đa giác có hai mặt đáy song song và bằng nhau, mặt bên là hình bình hành thì đa giác đó gọi là hình lăng trụ.
b. Các tính chất hình lăng trụ:
- Các cạnh bên song song và bằng nhau
- Các mặt bên là hình bình hành
- Hai đáy của lăng trụ là hai đa giác bằng nhau và nằm trong 2 mặt phẳng song song với nhau
c. Một số loại lăng trụ thường gặp
- Lăng trụ xiên: Giống với tính chất của hình lăng trụ thông thường
- Lăng trụ đứng:
+ Các cạnh bên vuông góc với đáy.
+ Các cạnh bên chính là đường cao của nó
+ Các mặt bên là hình chữ nhật
- Lăng trụ đều:
+ Là lăng trụ đứng có đáy là đa giác đều
+ Các mặt bên là các hình chữ nhật bằng nhau
- Hình hộp: Là lăng trụ có đáy là hình bình hành
+ Hình hộp đứng có các cạnh bên vuông góc với đáy
+ Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật
+ Hình lập phương là hình hộp đứng có tất cả các cạnh bằng nhau.
2. Công thức tính thể tích khối lăng trụ
- Cho khối lăng trụ có:
+ Chiều cao là h
+ Diện tích đáy là S
Khi đó thể tích:
V = S. h
Đối với khối lăng trụ đều, đáy là một hình đa giác đều. Để tính thể tích V của một khối lăng trụ đều, chúng ta sử dụng công thức: V = S.h; trong đó S là diện tích đáy đều và h là chiều cao của khối lăng trụ đều.
- Thể tích của hình hộp chữ nhật có:
+ Chiều dài a
+ Chiều rộng b
+ Chiều cao h là:
V=a.b.h
- Thể tích hình lập phương cạnh a là
3. Các dạng toán tính thể tích khối lăng trụ
Dạng 1. Tính thể tích khối lăng trụ đứng
VD1. Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại B. Biết và . Tính thể tích khối lăng trụ ABC.A’B’C’
Lời giải:
Ta có vuông cân tại B nên
ABC.A’B’C’ là lăng trụ đứng nên . Do đó vuông tại C
Áp dụng định lí Pytago ta được:
Diện tích bằng
Suy ra :
VD2. Cho lăng trụ đều ABC.A’B’C’ cạnh a. Góc giữa A’B với đáy bằng . Tính thể tích khối lăng trụ.
Lời giải:
Do ABC.A’B’C’ là lăng trụ đều nên và ABC là tam giác đều
Ta có :
Diện tích tam giác đều ABC là
Do đó thể tích lăng trụ là :
Dạng 2. Tính thể tích của khối lăng trụ xiên
VD1. Cho lăng trụ xiên ABC.A’B’C’ có đáy là tam giác đều cạnh a. Cạnh bên bằng và hợp với đáy một góc bằng . Thể tích của lăng trụ bằng?
Lời giải:
Gọi hình chiếu vuông góc của C’ xuông (ABC) là H.
Khi đó :
Diện tích tam giác ABC là
Suy ra thể tích lăng trụ là :
VD2. Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ xuống (ABC) là trung điểm H của AB. Mặt bên (ACC’A’) tạo với đáy góc Tính thể tích khối lăng trụ ABC.A’B’C’
Lời giải:
Trong (ABC) kẻ
Ta có:
Khi đó góc giữa (ABC) và (ACC’A’) là góc giữa HK và A’K là
Xét tam giác AHK vuông tại K có ,
Xét tam giác A’HK vuông tại H có
Diện tích tam giác ABC là
Suy ra thể tích lăng trụ là :
4. Luyện tập
Bài 1. Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A; . Khoảng cách từ A đến mp (A’BC) bằng . Tính thể tích khối lăng trụ đã cho.
Bài 2. Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a. . Tính thể tích lăng trụ ABCD.A’B’C’D’.
Bài 3. Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B; . Hình chiếu của A’ lên (ABC) là điểm H thuộc cạnh AC sao cho . Mặt bên tạo với đáy góc . Tính thể tích khối lăng trụ ABC.A’B’C’.
Bài 4. Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Cạnh bên AA’ = a. Hình chiếu của A’ trên mp (ABCD) trùng với trung điểm I của cạnh AB. Gọi K là trung điểm BC. Tính thể tích khối chóp A’.IKD
Bài 5. Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu H của A’ lên mp (ABC) trùng với trung điểm của BC. Góc giữa mp (A’ABB’) và đáy bằng . Tính thể tích khối tứ diện ABCA’.
Xem thêm tổng hợp công thức môn Toán lớp 12 đầy đủ và chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 12 (sách mới) | Giải bài tập Hóa 12
- Lý thuyết Hóa học 12
- Giải sbt Hóa học 12
- Các dạng bài tập Hoá học lớp 12
- Giáo án Hóa học lớp 12 mới nhất
- Tóm tắt tác phẩm Ngữ văn 12
- Soạn văn 12 (hay nhất) | Để học tốt Ngữ văn 12 (sách mới)
- Soạn văn 12 (ngắn nhất)
- Tác giả tác phẩm Ngữ văn lớp 12
- Văn mẫu lớp 12
- Giải sgk Sinh học 12 (sách mới) | Giải bài tập Sinh học 12
- Lý thuyết Sinh học 12 | Kiến thức trọng tâm Sinh 12
- Giải sgk Địa Lí 12 (sách mới) | Giải bài tập Địa lí 12
- Lý thuyết Địa Lí 12
- Giải Tập bản đồ Địa Lí 12
- Giải sgk Vật Lí 12 (sách mới) | Giải bài tập Vật lí 12
- Giải sbt Vật Lí 12
- Lý thuyết Vật Lí 12
- Các dạng bài tập Vật lí lớp 12
- Giáo án Vật lí lớp 12 mới nhất
- Giải sgk Lịch sử 12 (sách mới) | Giải bài tập Lịch sử 12
- Giải Tập bản đồ Lịch sử 12
- Lý thuyết Lịch sử 12
- Giải sgk Giáo dục công dân 12
- Lý thuyết Giáo dục công dân 12
- Giải sgk Giáo dục quốc phòng - an ninh 12 (sách mới) | Giải bài tập GDQP 12
- Lý thuyết Giáo dục quốc phòng 12 | Kiến thức trọng tâm GDQP 12
- Lý thuyết Tin học 12
- Lý thuyết Công nghệ 12