Công thức tính thể tích khối lăng trụ và cách giải các dạng bài tập (2024) chi tiết nhất

Với Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất Toán lớp 12 Hình học chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất biết cách làm bài tập Toán 12. Mời các bạn đón xem:

1 2,922 26/08/2024
Tải về


Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất

1. Lý thuyết về khối lăng trụ

a. Định nghĩa: Một đa giác có hai mặt đáy song song và bằng nhau, mặt bên là hình bình hành thì đa giác đó gọi là hình lăng trụ.

b. Các tính chất hình lăng trụ:

- Các cạnh bên song song và bằng nhau

- Các mặt bên là hình bình hành

- Hai đáy của lăng trụ là hai đa giác bằng nhau và nằm trong 2 mặt phẳng song song với nhau

c. Một số loại lăng trụ thường gặp

- Lăng trụ xiên: Giống với tính chất của hình lăng trụ thông thường

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

- Lăng trụ đứng:

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

+ Các cạnh bên vuông góc với đáy.

+ Các cạnh bên chính là đường cao của nó

+ Các mặt bên là hình chữ nhật

- Lăng trụ đều:

+ Là lăng trụ đứng có đáy là đa giác đều

+ Các mặt bên là các hình chữ nhật bằng nhau

- Hình hộp: Là lăng trụ có đáy là hình bình hành

+ Hình hộp đứng có các cạnh bên vuông góc với đáy

+ Hình hộp chữ nhật là hình hộp đứng có đáy là hình chữ nhật

+ Hình lập phương là hình hộp đứng có tất cả các cạnh bằng nhau.

2. Công thức tính thể tích khối lăng trụ

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

- Cho khối lăng trụ có:

+ Chiều cao là h

+ Diện tích đáy là S

Khi đó thể tích:

V = S. h

Đối với khối lăng trụ đều, đáy là một hình đa giác đều. Để tính thể tích V của một khối lăng trụ đều, chúng ta sử dụng công thức: V = 13S.h; trong đó S là diện tích đáy đều và h là chiều cao của khối lăng trụ đều.

- Thể tích của hình hộp chữ nhật có:

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

+ Chiều dài a

+ Chiều rộng b

+ Chiều cao h là:

V=a.b.h

- Thể tích hình lập phương cạnh a là V=a3

3. Các dạng toán tính thể tích khối lăng trụ

Dạng 1. Tính thể tích khối lăng trụ đứng

VD1. Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại B. Biết AC=a2 BC'=2a. Tính thể tích khối lăng trụ ABC.A’B’C’
Lời giải:

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

Ta có ΔABC vuông cân tại B nên AB=BC=a

ABC.A’B’C’ là lăng trụ đứng nên C'CBC. Do đó ΔBCC' vuông tại C

Áp dụng định lí Pytago ta được: CC'=a3

Diện tích ΔABC bằng 12a2

Suy ra :

VABC.A'B'C'=CC'.SΔABC=a332

VD2. Cho lăng trụ đều ABC.A’B’C’ cạnh a. Góc giữa A’B với đáy bằng 60. Tính thể tích khối lăng trụ.

Lời giải:

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

Do ABC.A’B’C’ là lăng trụ đều nên A'AABC và ABC là tam giác đều

Ta có :

A'B,ABC=A'B,AB=A'BA^=60A'A=AB.tan60=a3

Diện tích tam giác đều ABC là SΔABC=a234

Do đó thể tích lăng trụ là :

V=A'A.SΔABC=a3.a234=3a34

Dạng 2. Tính thể tích của khối lăng trụ xiên

VD1. Cho lăng trụ xiên ABC.A’B’C’ có đáy là tam giác đều cạnh a. Cạnh bên bằng a3 và hợp với đáy một góc bằng 45. Thể tích của lăng trụ bằng?

Lời giải:

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

Gọi hình chiếu vuông góc của C’ xuông (ABC) là H.

Khi đó :

C'C,ABC=C'C,HC=C'CH^=45C'H=C'C.sin45=a62

Diện tích tam giác ABC là SΔABC=a234

Suy ra thể tích lăng trụ là :

V=C'H.SΔABC=a62a234=3a328

VD2. Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ xuống (ABC) là trung điểm H của AB. Mặt bên (ACC’A’) tạo với đáy góc 60 Tính thể tích khối lăng trụ ABC.A’B’C’

Lời giải:

Công thức tính thể tích khối lăng trụ đầy đủ, chi tiết nhất - Toán lớp 12 (ảnh 1)

Trong (ABC) kẻ HKAC

Ta có:

ACHKACA'HACA'K

Khi đó góc giữa (ABC) và (ACC’A’) là góc giữa HK và A’K là A'KH^=60

Xét tam giác AHK vuông tại K có A^=60,

AH=a2HK=AH.sin60=a34

Xét tam giác A’HK vuông tại H có K^=60

A'H=HK.tan60=3a4

Diện tích tam giác ABC là SΔABC=a234

Suy ra thể tích lăng trụ là :

V=A'H.SΔABC=3a4a234=3a3316

4. Luyện tập

Bài 1. Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A; AB=a, AC=2a2. Khoảng cách từ A đến mp (A’BC) bằng a32. Tính thể tích khối lăng trụ đã cho.

Bài 2. Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy là hình thoi cạnh a. BAD^=60AC'=2a. Tính thể tích lăng trụ ABCD.A’B’C’D’.

Bài 3. Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B; AB=a. Hình chiếu của A’ lên (ABC) là điểm H thuộc cạnh AC sao cho HC=2HA. Mặt bên ABB'A' tạo với đáy góc 60. Tính thể tích khối lăng trụ ABC.A’B’C’.

Bài 4. Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Cạnh bên AA’ = a. Hình chiếu của A’ trên mp (ABCD) trùng với trung điểm I của cạnh AB. Gọi K là trung điểm BC. Tính thể tích khối chóp A’.IKD

Bài 5. Cho lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu H của A’ lên mp (ABC) trùng với trung điểm của BC. Góc giữa mp (A’ABB’) và đáy bằng 60. Tính thể tích khối tứ diện ABCA’.

1 2,922 26/08/2024
Tải về