Công thức tính diện tích thiết diện hình nón chi tiết nhất – Toán 12
Với Công thức tính diện tích thiết diện hình nón chi tiết nhất Toán lớp 12 Hình học chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ Công thức tính diện tích thiết diện hình nón chi tiết nhất biết cách làm bài tập Toán 12. Mời các bạn đón xem:
Công thức tính diện tích thiết diện hình nón chi tiết nhất - Toán lớp 12
1. Lí thuyết
a. Thiết diện cắt bởi mặt phẳng qua đỉnh của hình nón
Thiết diện là một tam giác cân.
Thiết diện là tam giác SAB cân tại S
Gọi H là trung điểm AB. Khi đó:
+ Góc giữa thiết diện với đáy là . Giả sử
+ Diện tích thiết diện:
b. Thiết diện đi qua trục
Diện tích thiết diện:
c. Thiết diện cắt bởi mặt phẳng vuông góc với trục
Mặt phẳng (P) vuông góc và cách đỉnh một khoảng là h’ tạo ra thiết diện là một hình tròn.
Ta có: 2 tam giác SI’A’ và SIA đồng dạng nên:
Diện tích thiết diện
2. Các ví dụ
VD1. Một hình nón có thiết diện qua trục là một tam giác vuông cân cạnh a. Tính diện tích thiết diện đó.
Lời giải:
Thiết diện là tam giác SAB
Theo bài ta có SAB vuông cân tại S có
Diện tích tam giác SAB là
VD2. Cho hình nón có bán kính đáy bằng và chiều cao bằng . Một mặt phẳng đi qua đỉnh tạo với mặt đáy góc . Tính diện tích thiết diện được tạo thành.
Lời giải:
Thiết diện tạo thành là tam giác SAB
Gọi H là trung điểm AB. Ta chứng minh được
Tam giác IAH vuông tại H nên
Suy ra
VD3. Cho hình nón đỉnh S có chiều cao a. Mặt phẳng (P) qua S và cắt đáy tại A và B sao cho . Khoảng cách từ tâm đường tròn đáy đến (P) là . Tính diện tích thiết diện được tạo thành.
Lời giải:
Thiết diện là tam giác SAB
Gọi H là trung điểm AB.
Trong mp (SHI) kẻ
Ta có:
Vậy diện tích thiết diện là
VD4. Cho hình nón có bán kính đáy bằng 3 và đường sinh là 5. Mặt phẳng (P) qua đỉnh và tạo với trục một góc . Tính diện tích thiết diện
Lời giải:
Thiết diện là tam giác SAB
Gọi H là trung điểm AB
Ta có góc giữa (SAB) và trục là
Chiều cao hình nón là :
Ta có :
VD5. Cho hình nón có bán kính đáy bằng 4 và chiều cao là 5. Mặt phẳng (P) vuông góc và cách đáy một đoạn bằng 2. Mặt phẳng (P) cắt hình nón theo giao tuyến là một đường tròn. Tính diện tích hình tròn đó.
Lời giải:
Gọi tâm thiết diện là I’ bán kính thiết diện là I’A’
Tâm đường tròn đáy của nón là I; bán kính là IA
Theo bài ta có
Tam giác SI’A’ và SIA đồng dạng nên:
Vậy diện tích thiết diện là:
Xem thêm tổng hợp công thức môn Toán lớp 12 đầy đủ và chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 12 (sách mới) | Giải bài tập Hóa 12
- Lý thuyết Hóa học 12
- Giải sbt Hóa học 12
- Các dạng bài tập Hoá học lớp 12
- Giáo án Hóa học lớp 12 mới nhất
- Tóm tắt tác phẩm Ngữ văn 12
- Soạn văn 12 (hay nhất) | Để học tốt Ngữ văn 12 (sách mới)
- Soạn văn 12 (ngắn nhất)
- Tác giả tác phẩm Ngữ văn lớp 12
- Văn mẫu lớp 12
- Giải sgk Sinh học 12 (sách mới) | Giải bài tập Sinh học 12
- Lý thuyết Sinh học 12 | Kiến thức trọng tâm Sinh 12
- Giải sgk Địa Lí 12 (sách mới) | Giải bài tập Địa lí 12
- Lý thuyết Địa Lí 12
- Giải Tập bản đồ Địa Lí 12
- Giải sgk Vật Lí 12 (sách mới) | Giải bài tập Vật lí 12
- Giải sbt Vật Lí 12
- Lý thuyết Vật Lí 12
- Các dạng bài tập Vật lí lớp 12
- Giáo án Vật lí lớp 12 mới nhất
- Giải sgk Lịch sử 12 (sách mới) | Giải bài tập Lịch sử 12
- Giải Tập bản đồ Lịch sử 12
- Lý thuyết Lịch sử 12
- Giải sgk Giáo dục công dân 12
- Lý thuyết Giáo dục công dân 12
- Giải sgk Giáo dục quốc phòng - an ninh 12 (sách mới) | Giải bài tập GDQP 12
- Lý thuyết Giáo dục quốc phòng 12 | Kiến thức trọng tâm GDQP 12
- Lý thuyết Tin học 12
- Lý thuyết Công nghệ 12