Công thức tiếp tuyến với đồ thị hàm số chi tiết nhất – Toán 12

Với Công thức tiếp tuyến với đồ thị hàm số chi tiết nhất Toán lớp 12 Giải tích chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ Công thức tiếp tuyến với đồ thị hàm số chi tiết nhất biết cách làm bài tập Toán 12. Mời các bạn đón xem:

1 1,884 18/06/2022
Tải về


Công thức tiếp tuyến với đồ thị hàm số chi tiết nhất - Toán lớp 12

1. Lí thuyết.

- Cho hàm số y=fx có đồ thị (C). Điểm Mx0;fx0C. Đạo hàm của hàm số y=fx tại điểm x0. Kí hiệu f'x0 là hệ số góc của tiếp tuyến của (C) tại M.

- Phương trình tiếp tuyến Δ

Δ:y=f'x0.xx0+fx0

- Điều kiện tiếp xúc của fx và gx là hệ fx=gxf'x=g'xcó nghiệm.

2. Các bước viết phương trình tiếp tuyến của đồ thị hàm số y=fx

- Xác định tiếp điểm Mx0;fx0

- Tính f'x0

- Tiếp tuyến có dạng:

Δ:y=f'x0.xx0+fx0

3. Một số dạng toán

a. Tiếp tuyến đi qua tiếp điểm thuộc đồ thị

- Làm theo các bước của phần 2.

VD1. Viết phương trình tiếp tuyến của đồ thị hàm số y=x32x2+1 tại điểm có hoành độ bằng 2.

Lời giải:

- Tọa độ tiếp điểm M2;1

y'=3x24xy'2=4

Phương trình tiếp tuyến:

Δ:y=4x2+1Δ:y=4x7

VD2. Viết phương trình tiếp tuyến của đồ thị hàm số y=x22x+1 tại điểm có tung độ bằng 4.

Lời giải:

Tọa độ tiếp điểm M3;4 và N1;4

- Gọi Δ1 là phương trình tiếp tuyến tại M

Δ2 là phương trình tiếp tuyến tại N

Ta có:

y'=2x2y'3=4y'1=4Δ1:y=4x8Δ2:y=4x

b. Tiếp tuyến thỏa mãn điều kiện cho trước (biết trước hệ số góc của tiếp tuyến)

- Bài toán cho hệ số góc của tiếp tuyến là k

+ Giải phương trình f'x0=kMx0;fx0

+ Sau đó viết phương trình tiếp tuyến qua M

- Chú ý: Tiếp tuyến song song với đường thẳng d1 có hệ số góc k1 thì k=k1

Tiếp tuyến vuông góc với đường thẳng d2 có hệ số góc k2 thì k.k2=1

VD3. Viết phương trình tiếp tuyến với y=x39x2+1 trong các trường hợp sau:

a. Hệ số góc của tiếp tuyến là -27

b. Tiếp tuyến song song với đường thẳng d:y=21x244

Lời giải:

a. Gọi hoành độ tiếp điểm là x0

Giải phương trình:

f'x0=273x0218x0=27x0=3

Suy ra tiếp điểm M3;53

Vậy phương trình tiếp tuyến là :

Δ:y=27x353Δ:y=27x+28

b. Gọi phương trình tiếp tuyến là Δ'. Do Δ' // d nên hệ số góc của Δ' là 21

Gọi hoành độ tiếp điểm là x0. Giải phương trình:

f'x0=21x0=1x0=7

Với x0=1 ta được tiếp điểm là M1;9

Δ':y=21x+12

Với x0=7 ta được tiếp điểm là N7;97,M1;9

Δ':y=21x244

Tuy nhiên đường thẳng này lại trùng với d nên loại.

Vậy phương trình tiếp tuyến là Δ':y=21x+12

4. Luyện tập

Bài 1. Viết phương trình tiếp tuyến với đồ thị hàm số  y=x22x

a. Tại điểm có hoành độ là -1

b. Tại điểm có tung độ là 8

Bài 2. Viết phương trình tiếp tuyến với đồ thị hàm số y=x+2x1 tại điểm có hoành độ là 2.

Bài 3. Viết phương trình tiếp tuyến với đồ thị hàm số y=x42x23 biết tiếp tuyến song song với đường thẳng y=24x1

Bài 4. Viết phương trình tiếp tuyến với đồ thị hàm số y=x3+3x23 biết tiếp tuyến vuông góc với đường thẳng d:y=19x+1

Bài 5. Viết phương trình tiếp tuyến với đồ thị hàm số y=x26x+3. Biết tiếp tuyến đi qua điểm A2;10

1 1,884 18/06/2022
Tải về