50 bài toán về các phương pháp tính nguyên hàm (có đáp án 2024) – Toán 12

Với cách giải các dạng toán về Các phương pháp tính nguyên hàm và cách giải bài tập môn Toán lớp 12 Giải tích gồm phương pháp giải chi tiết, bài tập minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập các dạng toán về Các phương pháp tính nguyên hàm và cách giải bài tập lớp 12. Mời các bạn đón xem:

1 1,383 29/12/2023
Tải về


Các phương pháp tính nguyên hàm và cách giải bài tập - Toán lớp 12

A. LÝ THUYẾT VÀ PHƯƠNG PHÁP GIẢI

1. Phương pháp biến đổi biến số.

Nếu thì fux.u'xdx=Fux+C.

Giả sử ta cần tìm họ nguyên hàm I=fxdx, trong đó ta có thể phân tích fx=guxu'x thì ta thực hiện phép đổi biến số t=ux, suy ra dt=u'xdx.

Khi đó ta được nguyên hàm: gtdt=Gt+C=Gux+C.

Chú ý: Sau khi tìm được họ nguyên hàm fxdx=Fx+C theo t thì ta phải thay t=ux.

Các bước thực hiện:

Bước 1: Chọn x=φt , trong đó φt là hàm số mà ta chọn thích hợp .

Bước 2: Lấy vi phân hai vế : dx=φ'tdt

Bước 3: Biến đổi : f(x)dx=fφtφ'tdt=gtdt

Bước 4: Khi đó tính : f(x)dx=g(t)dt=G(t)+C.

Một số cách đổi biến số hay gặp.

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

2. Phương pháp tính nguyên hàm từng phần.

Cho hai hàm số u và v liên tục trên đoạn a;b và có đạo hàm liên tục trên đoạn a;b.

Khi đó: udv=uvvdu.*

Để tính nguyên hàm fxdx bằng từng phần ta làm như sau:

Bước 1. Chọn u, v sao cho từ fxdx=udv (chú ý  dv=v'xdx).

Sau đó tính v=dvdu=u'.dx.

Bước 2. Thay vào công thức * và tính vdu.

+ Phương pháp này chủ yếu dùng cho các biểu thức dạng p(x)q(x)dx trong các trường hợp sau:

Chú ý: Với p(x) là đa thức của x, ta thường gặp các dạng sau:

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Lưu ý: Chọn u: Nhất log, nhì đa, tam lượng, tứ mũ.

- Mở rộng: Quy tắc đường chéo để tính tích phân từng phần

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Áp dụng nhanh trong trường hợp u là một đa thức bậc cao.

Ở cột u, lấy đạo hàm liên tiếp đến khi được kết quả bằng 0, hoặc đến khi lấy đạo hàm phức tạp hơn, hoặc đến khi lặp lại thì dừng.

Ở cột v, tìm nguyên hàm tương ứng của v.

Ví dụ áp dụng: Tìm các nguyên hàm sau:

1. (x+2)e2xdx

2. (2x1)cosxdx

3. (3x21)lnxdx

Giải: Áp dụng quy tắc đường chéo:

1: (x+2)e2xdx

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Căn cứ vào bảng ta được:

(x+2)e2xdx=12(x+2)e2x14e2x+C

2. (2x1)cosxdx

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Căn cứ vào bảng ta được:

(2x1)cosxdx=2x1sinx+2cosx+C

3. (3x21)lnxdx

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Căn cứ vào bảng ta được:

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

B. CÁC VÍ DỤ MINH HOẠ.

Ví dụ 1. Họ tất cả các nguyên hàm của hàm số f(x)=2x+1(x+2)2 trên khoảng 2;+ là:

A. 2ln(x+2)+1x+2+C.

B. 2ln(x+2)1x+2+C.

C. 2ln(x+2)3x+2+C.

D. 2ln(x+2)+3x+2+C.

Lời giải

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Chọn D.

Ví dụ 2. Hàm số nào sau đây là một nguyên hàm của gx=lnxx+12?

A. lnxx+1+lnxx+1+1999

B. lnxx+1lnxx+1+1998 .

C. lnxx+1lnxx+1+2016

D. lnxx+1+lnxx+1+2017 .

Lời giải

Gọi nguyên hàm của hàm số đã cho là S, ta có :

Đặt u=lnxdv=1x+12dxdu=1xdxv=1x+1

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Chọn A.

Ví dụ 3. Tìm một nguyên hàm của hàm số fx=x3ln4x24+x2?

A. x4ln4x24+x22x2 .

B. x4164ln4x24+x22x2 .

C. x4ln4x24+x2+2x2 .

D. x4164ln4x24+x2+2x2 .

Lời giải

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Khi đó ta có một nguyên hàm của hàm số đã cho là x4164ln4x24+x22x2

Chọn B.

C. BÀI TẬP TỰ LUYỆN.

Câu 1. Nguyên hàm của xx2+1dx là:

A. lnt+C , với t=x2+1

B. -lnt+C, với t=x2+1.

C. 12lnt+C , với t=x2+1.

D. -12lnt+C , với t=x2+1.

Câu 2. Với phương pháp đổi biến số xt , nguyên hàm ln2xxdx bằng:

A. 12t2+C .

B. t2+C .

C. 2t2+C .

D. 4t2+C

Câu 3. Nguyên hàm của I=xlnxdx bằng:

A. x22lnxxdx+C .

B. x22lnx12xdx+C .

C. x2lnx12xdx+C .

D. x2lnxxdx+C .

Câu 4. Họ nguyên hàm của ex1+xdx là:

A. I=ex+xex+C .

B. I=ex+12xex+C .

C. I=12ex+xex+C .

D. I=2ex+xex+C .

Câu 5. 2xx2+1+xlnxdx có dạng a3x2+13+b6x2lnx14x2+C, trong đó a,b là hai số hữu tỉ. Giá trị a bằng:

A. 3 .

B. 2 .

C. 1 .

D. Không tồn tại

Câu 6. Tính F(x)=dxx2lnx+1

A. F(x)=22lnx+1+C

B. F(x)=2lnx+1+C

C. F(x)=142lnx+1+C

D. F(x)=122lnx+1+C

Câu 7. Tính F(x)=x3x41dx

A. F(x)=lnx41+C

B. F(x)=14lnx41+C

C. F(x)=12lnx41+C

D. F(x)=12lnx41+C

Câu 8. Họ nguyên hàm của hàm số f(x)=2xx2+1 là:

A. 23x2+13+C

B. 2x2+13+C

C. x2+13+C

D. 13x2+13+C

Câu 9. Họ nguyên hàm của hàm số f(x)=2xx2+1 là:

A. x2+1+C

B. 12x2+1+C

C. 2x2+1+C

D. 4x2+1+C

Câu 10. Họ nguyên hàm của hàm số f(x)=2xx2+4 là:

A. 2lnx2+4+C

B. lnx2+42+C

C. lnx2+4+C

D. 4lnx2+4+C

Câu 11. Họ nguyên hàm của hàm số f(x)=exex+3 là:

A. ex3+C

B. 3ex+9+C

C. 2lnex+3+C

D. lnex+3+C

Câu 12. Họ nguyên hàm của hàm số f(x)=lnxx là:

A. ln2x+C

B. lnx+C

C. ln2x2+C

D. lnx2+C

Câu 13. Họ nguyên hàm của hàm số f(x)=2x.2x2 là:

A. 1ln2.2x2+C

B. 1ln2.2x2+C

C. ln22x2+C

D. ln2.2x2+C

Câu 14. Tính 2xx2+94 dx ta được kết quả là:

A. 15x2+95+C

B. 13x2+93+C

C. 4x2+95+C

D. 1x2+93+C

Câu 15. Một nguyên hàm của 1x2+93+C là:

A. 12lnx+1

B. 2lnx2+1

C. 12ln(x2+1)

D. ln(x2+1)

Câu 16. Nguyên hàm của hàm số fx=xex là:

A. xex+ex+C

B. ex+C

C. x22ex+C

D. xexex+C

Câu 17. Kết quả của lnxdx là:

A. xlnx+x+C

B. Đáp án khác

C. xlnx+C

D. xlnxx+C

Câu 18. Kết quả của xlnxdx là:

A. xlnx+x+C

B. Đáp án khác

C. xlnx+C

D. xlnxx+C

Câu 19. Họ nguyên hàm của hàm số f(x)=2x+1x2+x+4 là:

A. 2lnx2+x+4+C

B. lnx2+x+4+C

C. lnx2+x+42+C

D. 4lnx2+x+4+C

Câu 20. Họ nguyên hàm của hàm số f(x)=2+xx2+4x4 là :

A. 12.lnx2+4x4+C

B. lnx2+4x4+C

C. 2lnx2+4x4+C

D. 4lnx2+4x4+C

Câu 21. Họ nguyên hàm của hàm số f(x)=ln2xx là :

A. ln2x+C

B. ln2x+C

C. ln22x2+C

D. lnx2+C

Câu 22. Câu nào sau đây sai?

A. Nếu F't=ft thì F'ux=fux.

B. ft dt=Ft+Cfuxu'x dx=Fux+C

C. Nếu Gt là một nguyên hàm của hàm số gt thì Gux là một nguyên hàm của hàm số gux.u'x.

D. ft dt=Ft+Cfu du=Fu+C với u=ux.

Câu 23. Trong các khẳng định sau, khẳng định nào sai?

A. Nếu ft dt=Ft+C thì fux.u'x dx=Fux+C.

B. Nếu FxGx đều là nguyên hàm của hàm số fx thì FxGx dx có dạng hx=Cx+D ( C,D là các hằng số và C0).

C. Fx=7+sin2x là một nguyên hàm của fx=sin2x.

D. u'xuxdx=ux+C.

Câu 24. Để tính elnxxdx theo phương pháp đổi biến số, ta đặt:

A. t=elnx.

B. t=lnx.

C. t=x.

D. t=1x.

Câu 25. F(x) là một nguyên hàm của hàm số y=xex2. Hàm số nào sau đây không phải là F(x):

A. Fx=12ex2+2

B. Fx=12ex2+5

C. Fx=12ex2+C

D. Fx=122ex2

Câu 26. Để tính xln2+xdx theo phương pháp tính nguyên hàm từng phần, ta đặt:

A. u=xdv=ln2+xdx.

B. u=ln2+xdv=xdx.

C. u=xln2+x dv=dx.

D. u=ln2+xdv=dx.

Câu 27. Hàm số fx=x1ex có một nguyên hàm Fx là kết quả nào sau đây, biết nguyên hàm này bằng 1 khi x=0?

A. Fx=x1ex

B. Fx=x2ex

C. Fx=x+1ex+1

D. Fx=x2ex+3

Câu 28. Một nguyên hàm của fx=xlnx là kết quả nào sau đây, biết nguyên hàm này triệt tiêu khi x=1?

A. Fx=12x2lnx14x2+1

B. Fx=12x2lnx+14x+1

C. Fx=12xlnx+12x2+1

D. Một kết quả khác.

Câu 29. Cho F(x)=12x2 là một nguyên hàm của hàm số f(x)x. Tìm nguyên hàm của hàm số f'(x)lnx

A. f'(x)lnxdx=lnxx2+12x2+C

B. f'(x)lnxdx=lnxx2+1x2+C

C. f'(x)lnxdx=lnxx2+1x2+C

D. f'(x)lnxdx=lnxx2+12x2+C

Câu 30. Tính nguyên hàm I=lnlnxxdx được kết quả nào sau đây?

A. I=lnx.lnlnx+C.

B. I=lnx.lnlnx+lnx+C.

C. I=lnx.lnlnxlnx+C.

D. I=lnlnx+lnx+C.

Đáp án

Các phương pháp tính nguyên hàm và cách giải bài tập – Toán lớp 12 (ảnh 1)

Xem thêm các dạng bài tập Toán lớp 12 có đáp án và lời giải chi tiết khác:

1 1,383 29/12/2023
Tải về