Chuyên đề Hình Trụ - Hình Nón - Hình Cầu mới nhất - Toán 9
Với Chuyên đề Toán 9 Chương 4: Hình Trụ - Hình Nón - Hình Cầu mới nhất được biên soạn bám sát chương trình Toán lớp 9 giúp bạn học tốt môn Toán hơn.
Mục lục Chuyên đề Toán 9 Chương 4: Hình Trụ - Hình Nón - Hình Cầu
Chuyên đề Hình trụ - Diện tích xung quanh và thể tích của hình trụ
Chuyên đề Hình nón – Hình nón cụt. Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Chuyên đề Hình cầu. Diện tích mặt cầu và thể tích hình cầu
Xem thêm các bài Chuyên đề Toán lớp 9 hay, chi tiết khác:
Chương 1: Căn bậc hai. Căn bậc ba
Chương 1: Hệ thức lượng trong tam giác vuông
Chương 3: Hệ hai phương trình bậc nhất hai ẩn
------------------------------------------------------
Chuyên đề Hình trụ - Diện tích xung quanh và thể tích của hình trụ - Toán 9
A. Lý thuyết
1. Hình trụ
Khi quay hình chữ nhật ABCD một vòng quanh cạnh AB cố định, ta được một hình trụ.
- Hai hình tròn (A) và (B) bằng nhau và nằm trong hai mặt phẳng song song được gọi là hai đáy của hình trụ.
- Đường thẳng AB được gọi là trục của hình trụ.
- Mỗi vị trí của CD được gọi là một đường sinh. Các đường sinh vuông góc với hai mặt phẳng đáy. Độ dài của đường sinh là chiều cao của hình trụ.
Ví dụ 1. Một số vật có dạng hình trụ trong thực tế như: hộp sữa bột, cốc thủy tinh đựng nước, lon nước ngọt,…
Hình minh họa:
2. Cắt hình trụ bởi một mặt phẳng
- Khi cắt hình trụ bởi một mặt phẳng song song với đáy, thì phần mặt phẳng nằm trong hình trụ (mặt cắt – thiết diện) là một hình tròn bằng hình tròn đáy.
Ví dụ 2. Hình trụ bị cắt bởi mặt phẳng song song với hai đáy thì phần mặt phẳng nằm trong hình trụ (mặt cắt) là hình tròn (I) bằng hình tròn đáy (hình tròn (O) và (O’)) (như hình vẽ).
- Khi cắt hình trụ bởi một mặt phẳng song song với trục OO' thì mặt cắt là một hình chữ nhật.
Ví dụ 3. Hình trụ bị cắt bởi mặt phẳng ABCD, mặt phẳng này song song với OO’ thì mặt cắt là hình chữ nhật ABCD (như hình vẽ).
3. Diện tích và thể tích hình trụ
Cho hình trụ có bán kính đáy R và chiều cao h.
- Diện tích xung quanh: Sxq = 2πRh.
- Diện tích toàn phần: Stp = 2πRh + 2πR2.
- Thể tích: V = πR2h.
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9